如何提高SQL查询速度

1你老师说的对,建立索引是可以提高查询速度的。你插入了百万条数据,可以测试。如果在C字段上建立索引,那以该字段为查询条件,在建立后查询和删除索引后查询比较一下就知道了。

sql关联查询怎么提高速度_sql语句关联查询sql关联查询怎么提高速度_sql语句关联查询


sql关联查询怎么提高速度_sql语句关联查询


sql关联查询怎么提高速度_sql语句关联查询


2关于视图。是提高不了查询速度的,因为视图对应一个SQL语句,它只是存起来而已,后需要进行视图消解才能进行查询,它和直接执行相应的语句是一样的,理论上还要慢一点。

3关于存储过程,弄好了是可以提高查询效率的,因为存储过程会把一段查询,也就是SQL语句进行贤编译,然后将编译后的代码存在于上,在用户查询时节省了SQL的编译时间,所以加快了查询速度。

如何提高SQL语句的查询效率

1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num is null

可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:

select id from t where num=0

3.应尽量避免在 where 子句中使用!=或<>作符,否则将引擎放弃使用索引而进行全表扫描。

4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num=10 or num=20

可以这样查询:

select id from t where num=10

union all

select id from t where num=20

5.in 和 not in 也要慎用,否则会导致全表扫描,如:

select id from t where num in(1,2,3)

对于连续的数值,能用 between 就不要用 in 了:

select id from t where num between 1 and 3

6.下面的查询也将导致全表扫描:

select id from t where name like '%abc%'

若要提高效率,可以考虑全文检索。

7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:

select id from t where num=@num

可以改为强制查询使用索引:

select id from t with(index(索引名)) where num=@num

8.应尽量避免在 where 子句中对字段进行表达式作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where num/2=100

应改为:

select id from t where num=1002

9.应尽量避免在where子句中对字段进行函数作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where substring(name,1,3)='abc' // oracle总有的是substr函数。

select id from t where datediff(day,createdate,'2005-11-30')=0 //查过了确实没有datediff函数。

应改为:

select id from t where name like 'abc%'

select id from t where createdate>='2005-11-30' and createdate<'2005-12-1' //

oracle 中时间应该把char 转换成 date 如: createdate >= to_date('2005-11-30','yyyy-mm-dd')

10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无确使用索引。

11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

12.不要写一些没有意义的查询,如需要生成一个空表结构:

select col1,col2 into #t from t where 1=0

这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:

create table #t(...)

13.很多时候用 exists 代替 in 是一个好的选择:

select num from a where num in(select num from b)

用下面的语句替换:

select num from a where exists(select 1 from b where num=a.num)

14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段,male、female几乎各一半,那么即使在上建了索引也对查询效率起不了作用。

15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。

16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

19.任何地方都不要使用 select from t ,用具体的字段列表代替“”,不要返回用不到的任何字段。

20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

21.避免频繁创建和删除临时表,以减少系统表资源的消耗。

22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性,使用导出表。

23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

24.如果使用到了临时表,在存储过程的后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

25.尽量避免使用游标,因为游标的效率较,如果游标作的数据超过1万行,那么就应该考虑改写。

26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。

29.尽量避免大事务作,提高系统并发能力。

30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

如何解决SQL查询速度太慢

解决方法如下:

1、把数据、日志、索引放到不同的设备上,增加读取速度;

2、纵向、横向分割表,减少表的尺寸;

3、升级硬件;

4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量,注意填充因子要适当,索引应该尽量小,使用字节数小的列建索引好,不要对有限的几个值的字段建单一索引如性别字段;

4、提高网速。

mysql多表联合查询速度的问题

问题

我们有一个 SQL,用于找到没有主键 / 键的表,但是在 MySQL 5.7 上运行特别慢,怎么办?

实验

我们搭建一个 MySQL 5.7 的环境,此处省略搭建步骤。

写个简单的脚本,制造一批带主键和不带主键的表:

执行一下脚本:

现在执行以下 SQL 看看效果:

...

执行了 16.80s,感觉是非常慢了。

现在用一下 DBA 三板斧,看看执行:

感觉有点惨,由于 rmation_schema.columns 是元数据表,没有必要的统计信息。

那我们来 show warnings 看看 MySQL 改写后的 SQL:

我们格式化一下 SQL:

可以看到 MySQL 将

select from A where A.x not in (select x from B) //非关联子查询

转换成了

select from A where not exists (select 1 from B where B.x = a.x) //关联子查询

如果我们自己是 MySQL,在执行非关联子查询时,可以使用很简单的策略:

select from A where A.x not in (select x from B where ...) //非关联子查询:1. 扫描 B 表中的所有记录,找到满足条件的记录,存放在临时表 C 中,建好索引2. 扫描 A 表中的记录,与临时表 C 中的记录进行比对,直接在索引里比对,

而关联子查询就需要循环迭代:

select from A where not exists (select 1 from B where B.x = a.x and ...) //关联子查询扫描 A 表的每一条记录 rA: 扫描 B 表,找到其中的条满足 rA 条件的记录。

显然,关联子查询的扫描成本会高于非关联子查询。

我们希望 MySQL 能先"缓存"子查询的结果(缓存这一步叫物化,MATERIALIZATION),但MySQL 认为不缓存更快,我们就需要给予 MySQL 一定指导。

...

可以看到执行时间变成了 0.67s。

整理

我们诊断的关键点如下:

1. 对于 rmation_schema 中的元数据表,执行不能提供有效信息。

2. 通过查看 MySQL 改写后的 SQL,我们猜测了优化器发生了误判。

3. 我们增加了 hint,指导 MySQL 正确进行优化判断。

但目前我们的实验仅限于猜测,猜中了万事大吉,猜不中就无法做出好的诊断。

利用SQL提升网站访问速度的技巧

使用动态数据库驱动的网站,例如WordPress,你的网站可能依然有一个问题亟待解决:数据库查询拖慢了网站访问速度。我将介绍如何识别导致性能出现问题的查询,如何找出它们的问题所在,以及快速修复这些问题和其他加快查询速度的方法。我会把门户网站出现的拖慢查询速度的情况作为实际的案例。

定位

处理慢SQL查询的步是找到慢查询。Ashley已经在之前的博客里面赞扬了调试插件QueryMonitor,而且这个插件的数据库查询特性使其成为定位慢SQL查询的宝贵工具。该插件会报告所有页面请求过程中的数据库请求,并且可以通过调用这些查询代码或者原件(插件,主题,WordPress核)过滤这些查询,高亮重复查询和慢查询。

要是不愿意在生产安环境装调试插件,也可以打开MySQLSlowQueryLog,这样在特定时间执行的所有查询都会被记录下来。这种方法配置和设置存放查询位置相对简单。由于这是一个服务级别的调整,性能影响会小于使用调试插件,但当不用的时候也应该关闭。

理解

一旦你找到了一个你要花很大代价找到的查询,那么接下来就是尝试去理解它并找到是什么让查询变慢。近,在我们开发我们网站的时候,我们找到了一个要执行8秒的查询。

我们使用WooCommerce和定制版的WooCommerce软件插件来运行我们的插件商店。此查询的目的是获取那些我们知道客户号的客户的所有。WooCommerce是一个稍微复杂的数据模型,即使订单以自定义的类型存储,用户的ID(商店为每一个用户创建的WordPress)也没有存储在t_author,而是作为后期数据的一部分。软件插件给自义定表创建了一对链接。让我们深入了解查询的更多信息。

MySQL是你的朋友

MySQL有一个很方便的语句DESCRIBE,它可以输出表结构的信息,比如字段名,数据类型等等。

你可能已经知道了这个语句。但是你知道DESCRIBE语句可以放在SELECT,INSERT,UPDATE,REPLACE和DELETE语句前边使用吗?更为人们所熟知的是他的同义词EXPLAIN,并将提供有关该语句如何执行的详细信息。

以上就是利用SQL提升网站访问速度的技巧。

网站提升网站网站访问

怎样提高SQL查询效率

1. SQL优化的原则是:将一次作需要读取的BLOCK数减到,即在短的时间达到的数据吞吐量。

调整不良SQL通常可以从以下几点切入:

? 检查不良的SQL,考虑其写法是否还有可优化内容

? 检查子查询 考虑SQL子查询是否可以用简单连接的方式进行重新书写

? 检查优化索引的使用

? 考虑数据库的优化器

2. 避免出现SELECT FROM table 语句,要明确查出的字段。

3. 在一个SQL语句中,如果一个where条件过滤的数据库记录越多,定位越准确,则该where条件越应该前移。

4. 查询时尽可能使用索引覆盖。即对SELECT的字段建立复合索引,这样查询时只进行索引扫描,不读取数据块。

5. 在判断有无符合条件的记录时建议不要用SELECT COUNT ()和select top 1 语句。

6. 使用内层限定原则,在拼写SQL语句时,将查询条件分解、分类,并尽量在SQL语句的里层进行限定,以减少数据的处理量。

7. 应避免在order by子句中使用表达式。

8. 如果需要从关联表读数据,关联的表一般不要超过7个。

9. 小心使用 IN 和 OR,需要注意In中的数据量。建议中的数据不超过200个。

10. <> 用 < 、 > 代替,>用>=代替,<用<=代替,这样可以有效的利用索引。

11. 在查询时尽量减少对多余数据的读取包括多余的列与多余的行。

12. 对于复合索引要注意,例如在建立复合索引时列的顺序是F1,F2,F3,则在where或order by子句中这些字段出现的顺序要与建立索引时的字段顺序一致,且必须包含列。只能是F1或F1,F2或F1,F2,F3。否则不会用到该索引。

13. 多表关联查询时,写法必须遵循以下原则,这样做有利于建立索引,提高查询效率。格式如下select sum(table1.je) from table1 table1, table2 table2, table3 table3 where (table1的等值条件(=)) and (table1的非等值条件) and (table2与table1的关联条件) and (table2的等值条件) and (table2的非等值条件) and (table3与table2的关联条件) and (table3的等值条件) and (table3的非等值条件)。

注:关于多表查询时from 后面表的出现顺序对效率的影响还有待研究。

14. 子查询问题。对于能用连接方式或者视图方式实现的功能,不要用子查询。例如:select name from customer where customer_id in ( select customer_id from order where money>1000)。应该用如下语句代替:select name from customer inner join order on customer.customer_id=order.customer_id where order.money>100。

15. 在WHERE 子句中,避免对列的四则运算,特别是where 条件的左边,严禁使用运算与函数对列进行处理。比如有些地方 substring 可以用like代替。

16. 如果在语句中有not in(in)作,应考虑用not exists(exists)来重写,的办法是使用外连接实现。

17. 对一个业务过程的处理,应该使事物的开始与结束之间的时间间隔越短越好,原则上做到数据库的读作在前面完成,数据库写作在后面完成,避免交叉。

18. 请小心不要对过多的列使用列函数和order by,group by等,谨慎使用disti软件开发t。

19. 用union all 代替 union,数据库执行union作,首先先分别执行union两端的查询,将其放在临时表中,然后在对其进行排序,过滤重复的记录。

当已知的业务逻辑决定query A和query B中不会有重复记录时,应该用union all代替union,以提高查询效率。