晶体电子显微镜_晶体电子显微镜结构图
在电子显微镜还没有发明的年代,地质学家都是如何研究晶体结构的?
地质学家研究晶体的历史可以追溯到很多年前。而电子显微镜的发明给地质学家研究带来了新的突破。之前只能通过肉眼观察。
晶体电子显微镜_晶体电子显微镜结构图
晶体电子显微镜_晶体电子显微镜结构图
晶体电子显微镜_晶体电子显微镜结构图
地质学家会先对晶体进行研究,对晶体的结构进行分析,了解晶体是由哪些成分构成的,然后就可以分析出晶体的结晶。
没有电子显微镜的时候,地质学家是通过晶体颗粒粗大的矿物岩石进行研究的。
在电子显微镜还没有被发明的年代,地质学家都是怎么研究晶体结构的?
在当时主要是通过X射线来进行晶体研究,而且在当时在这方面的技术也做得非常的好,而且能够清晰的观察到一些植物表皮上的一些细胞。
他们都是会用一种放大镜,来研制晶体,他们会选择从晶体上刮下来一些粉末,然后研究里面细微的东西。
那之后主要是去观看表面的一些程度,通过X射线以及计算机进行研究的,但是那个时候因为技术比较落后,所以研制出来的结果也不是特别正确。
可以通过肉眼,放大镜,化学方法 都是可以观察到的,而且当时有些技术是比较落后的,所以会另辟蹊径的。
显微镜分类
电子显微镜
电子显微镜,简称电镜,英文名Electron Microscope(简称EM),经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。电子显微镜由镜筒、真空装置和电源柜三部分组成。
工作原理:
电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。
电子显微镜的分辨能力以它所能分辨的相邻两点的小间距来表示。20世纪70年代,透射式电子显微镜的分辨率约为0.3纳米(人眼的分辨本领约为0.1毫米)。现在电子显微镜大放大倍率超过300万倍,而光学显微镜的大放大倍率约为2000倍,所以通过电子显微镜能直接观察到某些重金属的原子和晶体中排列整齐的原子点阵。
电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、电子数码显微镜等。
分类:
1、透射式电子显微镜
透射电子显微镜(Tranission electron microscope,缩写TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件(如荧光屏、胶片、以及感光耦合组件)上显示出来。
透射电镜的分辨率为0.1 0.2nm,放大倍数为几万 几十万倍。由于电子易散射或被物体吸收,故穿透力低,必须制备更薄的超薄切片(通常为50 100nm)。
TEM在中和物理学和生物学相关的许多科学领域都是重要的分析方法,如癌症研究、学、材料科学、以及纳米技术、半导体研究等等。
2、扫描式电子显微镜
扫描电子显微镜(SEM)是1965年发明的较现代的细胞生物学研究工具,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。
其工作原理是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。
扫描电子显微镜广泛应用于医学生物细胞的研究、化学电子材料分析以及金相观察等。
3、电子数码显微镜
电子数码显微镜是光学显微镜技术、光电转换技术以及液晶屏幕技术的结合。可以对微观领域的研究从传统的普通的双眼观察到通过显示器上再现,从而提高了工作效率。
有自带屏幕的数码显微镜,分为台式、便携式以及数码显微镜三类。台式数码显微镜放大倍率相对较高,与电子显微镜功能相似。便携式数码显微镜则体积小巧,携带方便,可实现随时随地观察的需求。
数码显微镜也可以选配较高配置的计算机,实现对观察结果的数据储存管理,得到更清晰直观的图像显示,作更加方便。
5、偏光显微镜
偏光显微镜(Polarizing microscope)是用于研究所谓透明与不透明各向异性材料的一种显微镜,在地质学等理工科专业中有重要应用。凡具有双折射的物质,在偏光显微镜下能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可用,而必须利用偏光显微镜。
反射偏光显微镜是利用光的偏振特性对具有双折射性物质进行研究鉴定的必备仪器, 可供广大用户做单偏光观察,正交偏光观察,锥光观察。
偏光显微镜是利用光的偏振特性对具有双折射性物质进行研究鉴定的必备仪器,可做单偏光观察,正交偏光观察,锥光观察。将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。
双折射性是晶体的基本特征。因此,偏光显微镜被广泛地应用在矿物、化学等领域。在人体及动物学方面,常利用偏光显微术来鉴别骨骼、牙齿、胆固醇、神经纤维、肿瘤细胞、横纹肌和毛发等。介绍一下有关偏光显微镜的应用领域。、
6、倒置显微镜
沧州欧谱倒置显微镜(inverted microscope)组成和普通显微镜一样,只不过物镜与照明系统颠倒,前者在载物台之下,后者在载物台之上,用于观察培养的活细胞,具有相物镜。
该显微镜观察时物于物镜前方,离开物镜的距离大于物镜的焦距,但小于两倍物镜焦距。所以,它经物镜以后,必然形成一个倒立的放大的实像A'B'。A'B'靠近F2的位置上。再经目镜放大为虚像A''B''后供眼睛观察。目镜的作用与放大镜一样。所不同的只是眼睛通过目镜所看到的不是物体本身,而是物体被物镜所成的已经放大了一次的像。
倒置金相显微镜主要用于鉴定和分析金属内部结构组织,它是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,该仪器配用摄像装置,可摄取金相图谱,并对图谱进行测量分析,对图像进行编辑、输出、存储、管理等功能。
买电子显微镜要多少钱
大多数大小在50-400nm左右,光学显微镜是看不到的,只能上电镜。
电镜的价格,大几十万,小几百万起步,不透明报价,都是直接联系厂家报价,支持定制。
好的光学显微镜都要十万了。
至少要9000以上吧,电镜能放大几百万倍
电子显微镜是用什么原理把物体放大的?
分类: 教育/科学 >> 科学技术 >> 工程技术科学
解析:
电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。
电子显微镜的分辨能力以它所能分辨的相邻两点的小间距来表示。20世纪70年代,透射式电子显微镜的分辨率约为0.3纳米(人眼的分辨本领约为0.1毫米)。现在电子显微镜放大倍率超过300万倍,而光学显微镜的放大倍率约为2000倍,所以通过电子显微镜就能直接观察到某些重金属的原子和晶体中排列整齐的原子点阵。
1931年,德国的克诺尔和鲁斯卡,用冷阴极放电电子源和三个电子透镜改装了一台高压示波器,并获得了放大十几倍的图象,证实了电子显微镜放大成像的可能性。1932年,经过鲁斯卡的改进,电子显微镜的分辨能力达到了50纳米,约为当时光学显微镜分辨本领的十倍,于是电子显微镜开始受到人们的重视。
到了二十世纪40年代,美国的希尔用消像散器补偿电子透镜的旋转不对称性,使电子显微镜的分辨本领有了新的突破,逐步达到了现代水平。在,1958年研制成功透射式电子显微镜,其分辨本领为3纳米,1979年又制成分辨本领为0.3纳米的大型电子显微镜。
电子显微镜的分辨本领虽已远胜于光学显微镜,但电子显微镜因需在真空条件下工作,所以很难观察活的生物,而且电子束的照射也会使生物样品受到辐照损伤。其他的问题,如电子枪亮度和电子透镜质量的提高等问题也有待继续研究。
分辨能力是电子显微镜的重要指标,它与透过样品的电子束入射锥角和波长有关。可见光的波长约为300~700纳米,而电子束的波长与加速电压有关。当加速电压为50~100千伏时,电子束波长约为0.0053~0.0037纳米。由于电子束的波长远远小于可见光的波长,所以即使电子束的锥角仅为光学显微镜的1%,电子显微镜的分辨本领仍远远优于光学显微镜。
电子显微镜由镜筒、真空系统和电源柜三部分组成。镜筒主要有电子枪、电子透镜、样品架、荧光屏和照相机构等部件,这些部件通常是自上而下地装配成一个柱体;真空系统由机械真空泵、扩散泵和真空阀门等构成,并通过抽气管道与镜筒相联接;电源柜由高压发生器、励磁电流稳流器和各种调节控制单元组成。
电子透镜是电子显微镜镜筒中重要的部件,它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与玻璃凸透镜使光束聚焦的作用相似,所以称为电子透镜。现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦。
电子枪是由钨丝热阴极、栅极和阴极构成的部件。它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于万分之一。
电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌,也能与 X射线衍射仪或电子能谱仪相结合,构成电子微探针,用于物质成分分析;发射式电子显微镜用于自发射电子表面的研究。
投射式电子显微镜因电子束穿透样品后,再用电子透镜成像放大而得名。它的光路与光学显微镜相仿。在这种电子显微镜中,图像细节的对比度是由样品的原子对电子束的散射形成的。样品较薄或密度较低的部分,电子束散射较少,这样就有较多的电子通过物镜光栏,参与成像,在图像中显得较亮。反之,样品中较厚或较密的部分,在图像中则显得较暗。如果样品太厚或过密,则像的对比度就会恶化,甚至会因吸收电子束的能量而被损伤或破坏。
透射式电子显微镜镜筒的顶部是电子枪,电子由钨丝热阴极发射出、通过,第二两个聚光镜使电子束聚焦。电子束通过样品后由物镜成像于中间镜上,再通过中间镜和投影镜逐级放大,成像于荧光屏或照相干版上。
中间镜主要通过对励磁电流的调节,放大倍数可从几十倍连续地变化到几十万倍;改变中间镜的焦距,即可在同一样品的微小部位上得到电子显微像和电子衍射图像。为了能研究较厚的金属切片样品,法国杜洛斯电子光学实验室研制出加速电压为3500千伏的超高压电子显微镜。扫描式电子显微镜结构示意图
扫描式电子显微镜的电子束 过样品,仅在样品表面扫描激发出次级电子。放在样品旁的闪烁晶体接收这些次级电子,通过放大后调制显像管的电子束强度,从而改变显像管荧光屏上的亮度。显像管的偏转线圈与样品表面上的电子束保持同步扫描,这样显像管的荧光屏就显示出样品表面的形貌图像,这与工业电视机的工作原理相类似。
扫描式电子显微镜的分辨率主要决定于样品表面上电子束的直径。放大倍数是显像管上扫描幅度与样品上扫描幅度之比,可从几十倍连续地变化到几十万倍。扫描式电子显微镜不需要很薄的样品;图像有很强的立体感;能利用电子束与物质相互作用而产生的次级电子、吸收电子和 X射线等信息分析物质成分。
扫描式电子显微镜的电子枪和聚光镜与透射式电子显微镜的大致相同,但是为了使电子束更细,在聚光镜下又增加了物镜和消像散器,在物镜内部还装有两组互相垂直的扫描线圈。物镜下面的样品室内装有可以移动、转动和倾斜的样品台。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。