新颖的数学论文题目有哪些

22、基于结构参数的机织物等效导热率数学建模

新颖的数学论文题目有:

高等数学论文 我和生活中的高等数学论文高等数学论文 我和生活中的高等数学论文


高等数学论文 我和生活中的高等数学论文


“圆的认识” 教学片断与反思

1、数学模型在解决实际问题中的作用。

7、浅谈中学数学教育。

2、中学数学中不等式的证明。

3、组合数学与中学数学。

4、构造方法在数学解题中的应用。

6、组合数学恒等式的证明方法。

8、浅谈中学不等式的几何证明方法。

9、数学教育中学生创造性思维能力的培养。

10、高等数学在初等数学中的应用。

11、向量在几何中的应用。

13、高中数学应用题的编制和一些解题方法。

14、浅谈反证法在中学教学中的应用。

15、探索证明线段相等的方法。

16、几个带参数的二阶边界值问题的正解的存在性研究。

17、关于丢番图方程1+x+y=z的一类特殊情况的研究。

18、变限积分函数的性质及应用。

19、有限集上函数的迭代及其应用。

20、小学课堂环境改着的行动研究。

21、网络环境下小学数学主题教学模式应用研究。

22、培养小学生数学学习兴趣的教学策略研究。

23、小学五年级儿童数学学习策略干预对改善其执行功能的研究。

24、小学生数学创新思维的培养。

25、促进小学生数学课堂参与的数学策略研究。

26、使学生真正成为学习的主人。

27、改革课堂教学的着力点。

28、谈素质教育在小学数学教学中的实施。

29、素质教育与小学数学教育改革。

30、浅谈学生数学思维能力的培养。

2022数学方向题目

41、数学题目汇总

学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个的数学论文题目,有哪些比较的数学论文题目呢?下面我给大家带来2022数学方向 毕业 论文题目有哪些,希望能帮助到大家!

↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓

★ 数学应用数学 ★

★ 大学生数学 ★

★ 大学评语大全 ★

★ 答辩致谢词10篇 ★

1、用面积思想 方法 解题

2、向量空间与矩阵

3、向量空间与等价关系

4、代数中美学思想新探

5、谈在数学中数学情景的创设

6、数学 创新思维 及其培养

7、用函数奇偶性解题

8、用方程思想方法解题

9、用数形结合思想方法解题

10、浅谈数学教学中的幽默风趣

11、中学数学教学与女中学生发展

13、论教师的人格魅力

14、论农村中小学数学 教育

15、论师范院校数学教育

16、数学在母校的发展

17、数学学习兴趣的激发和培养

18、谈新课程理念下的数学教师角色的转变

20、利用函数单调性解题

21、数学题目汇总

22、浅谈中学数学教学中学生能力的培养

23、变异思维与学生的创新精神

24、试论数学中的美学

25、数学课堂中的提问艺术数学建模的教学设计应反映数学教育发展和改革的方向,具体说来它更应强调发展学生的数学应用能力、逻辑推理能力、软体使用能力和自主学习能力。

28、复数方程的解★“三角形的积化和”课例大家评法

29、函数最值方法研究

30、图象法在中学数学中的应用

31、近年来高考命题研究

32、边数最少的自然图的构造

33、向量线性相关性讨论

34、组合数学在中学数学中的应用

35、函数最值研究

36、中学数学符号浅谈

37、论数学交流能力培养(数学语言、图形、 符号等)

38、探影响解决数学问题的心理因素

39、数学后进学生的心理分析

40、生活中处处有数学

42、生活中的数学

43、欧几里得第五公设产生背景及对数学发展影响

44、略谈我国古代的数学成就

45、论数学史的教育价值

46、课程改革与数学教师

47、数学生非智力因素的分析及对策

48、高考应用问题研究

49、“数形结合”思想在竞赛中的应用

50、浅谈数学的 文化 价值

51、浅谈数学中的对称美

52、三阶幻方性质的探究

53、试谈数学竞赛中的对称性

54、学竞赛中的信息型问题探究

55、柯西不等式分析

56、剩余定理应用

57、不定方程的研究

58、一些数学思维方法的证明

59、分类讨论思想在中学数学中的应用

60、生活数学文化分析

1、混杂随机时滞微分方程的稳定性与可控性

2、多目标单元构建技术在圆锯片生产企业的应用研究

3、基于区间直觉模糊集的多属性群决策研究

4、排队论在交通控制系统中的应用研究

5、若干类新形式的预条件迭代法的收敛性研究

6、高职微积分教学引入数学文化的实践研究

7、分数阶微分方程的Hyers-Ulam稳定性

8、三维面板数据模型的序列相关检验

9、半参数近似因子模型中的高维协方矩阵估计

10、高职院校高等数学教学改革研究

11、若干模型的分位数变量选择

12、若干变点模型的 经验 似然推断

13、基于Nier-Stokes方程的图像处理与应用研究

14、基于ESMD方法的模态统计特征研究

15、基于复杂网络的影响力识别算法的研究

16、基于不确定信息一致性及相关问题研究

17、基于奇异值及重组信任矩阵的协同过滤算法的研究

18、广义时变脉冲系统的时域控制

19、正六边形铺砌上H-三角形边界H-点数的研究

20、外来物种入侵的广义生物经济系统建模与控制

21、具有较少顶点个数的有限群元阶素图

22、基于支持向量机的混合时间序列模型的研究与应用

23、基于Copula函数的某些金融风险的研究

24、基于智能算法的时间序列预测方法研究

25、基于Copula函数的非寿险多元索赔准备金评估方法的研究

26、具有五个顶点的共轭类类长图

27、刚体系统的优化方法数值模拟

28、基于分进化算法的多准则决策问题研究

29、广义切换系统的指数稳定与H_∞控制问题研究

30、基于神经网络的混沌时间序列研究与应用

31、具有较少顶点的共轭类长素图

32、两类共扰食饵-捕食者模型的动力学行为分析

33、复杂网络社团划分及城市公交网络研究

34、在线核极限学习机的改进与应用研究

35、共振微分方程边值问题正解存在性的研究

36、几类非线性离散系统的自适应控制算法设计

37、数据维数约简及分类算法研究

38、几类非线性不确定系统的自适应模糊控制研究

39、区间二型TSK模糊逻辑系统的混合学习算法的研究

40、基于调用关系的软件执行网络结构特征分析

41、基于复杂网络的软件网络关键挖掘算法研究

42、圈图谱半径问题研究

43、非线性状态约束系统的自适应控制方法研究

44、power-normal分布及其参数估计问题的研究

45、旋流式系统的混沌仿真及其控制与同步研究

46、具有可选服务的M/M/1排队系统驱动的流模型

47、动力系统的混沌反控制与同步研究

48、载流矩形薄板在磁场中的随机分岔

49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制

50、带有非线性功能响应函数的食饵-捕食系统的研究

51、基于观测器的饱和时滞广义系统的鲁棒控制

52、高职数学课程培养学生关键技能的研究

53、基于生存分析和似然理论的数控机床可靠性评估方法研究

54、面向不完全数据的疲劳可靠性分析方法研究

55、带平方根俘获率的可变生物种群模型的稳定性研究

56、一类非线性分数阶动力系统混沌同步控制研究

57、带有不耐烦顾客的M/M/m排队系统的顾客损失率

58、小波方法求解三类变分数阶微积分问题研究

59、乘积空间上拓扑度和不动点指数的计算及其应用

60、浓度对流扩散方程高精度并行格式的构造及其应用

专业微积分数学论文题目

1、一元微积分概念教学的设计研究

2、基于分数阶微积分的飞航式控制系统设计方法研究

3、分数阶微积分运算数字滤波器设计与电路实现及其应用

4、分数阶微积分在现代信号分析与处理中应用的研究

5、广义分数阶微积分中若干问题的研究

6、分数阶微积分及其在粘弹性材料和控制理论中的应用

7、Riemann-Liouville分数阶微积分及其性质证明

8、中学微积分的教与学研究

9、高中数学教科书中微积分的变迁研究

10、HPM视域下的高中微积分教学研究

11、基于分数阶微积分理论的设计及应用

12、微积分在高中数学教学中的作用

13、高中微积分的教学策略研究

14、高中微积分教学中数学史的渗透

15、关于高中微积分的教学研究

16、微积分与中学数学的关联

17、中学微积分课程的教学研究

18、高中微积分课程内容选择的探索

19、高中微积分教学研究

20、高中微积分教学现状的调查与分析

21、微分方程理论中的若干问题

22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程

23、基于偏微分方程图像分割技术的研究

24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性

25、几类分数阶微分方程的数值方法研究

26、几类随机延迟微分方程的数值分析

27、微分求积法和微分求积单元法--原理与应用

28、基于偏微分方程的图像平滑与分割研究

29、小波与偏微分方程在图像处理中的应用研究

30、基于粒子群和微分进化的优化算法研究

31、基于变分问题和偏微分方程的图像处理技术研究

32、基于偏微分方程的图像去噪和增强研究

33、分数阶微分方程的理论分析与数值计算

34、基于偏微分方程的数字图象处理的研究

35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程

36、反射倒向随机微分方程及其在混合零和微分对策

37、基于偏微分方程的图像降噪和图像恢复研究

39、几类分数阶微分方程和随机延迟微分方程数值解的研究

40、非零和随机微分博弈及相关的高维倒向随机微分方程

41、高中微积分教学中数学史的渗透

42、关于高中微积分的教学研究

43、微积分与中学数学的关联

45、大学一年级学生对微积分基本概念的理解

46、中学微积分课程教学研究

47、中美两国高中数学教材中微积分内容的比较研究

48、高中生微积分知识理解现状的调查研究

49、高中微积分教学研究

50、中美高校微积分教材比较研究

51、分数阶微积分方程的一种数值解法

52、HPM视域下的高中微积分教学研究

53、高中微积分课程内容选择的探索

54、新课程理念下高中微积分教学设计研究

55、基于分数阶微积分的线控转向系统控制策略研究

56、基于分数阶微积分的数字图像去噪与增强算法研究

57、高中微积分教学现状的调查与分析

58、高三学生微积分认知状况的思维层次研究

59、分数微积分理论在车辆底盘控制中的应用研究

60、新课程理念下高中微积分课程的教育价值及其教学研究 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

本科数学题目

44、中学微积分课程的教学研究

主要目的是培养学生综合运用所学知识和技能,理论联系实际,分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你本科数学题目,仅供参考。

★谈谈类比法

本科数学题目

★浅谈奥数竟赛的利与弊

★浅谈中学数学中数形结合的思想

★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学

★中数教学研究

★XXX课程网上教学系统分析与设计

★数学CAI课件开发研究

★中等职业学校数学教学改革研究与探讨

★中等职业学校数学教学设计研究

★中等职业学校中外数学教学的比较研究

★中等职业学校数学教材研究

★关于数学学科案例教学法的探讨

★中外数学家学术思想探讨

★试论数学美

★数学中的研究性学习

★数字危机

★高斯分布的启示

★a二+b二≧二ab的变形推广及应用

★网络优化

★泰勒公式及其应用

★浅谈中学数学中的反证法

★数学选择题的利和弊

★浅谈计算机辅助数学教学

★论研究性学习

★浅谈发展数学思维的学习方法

★关于整系数多项式有理根的几个定理及求解方法

★数学教学中课堂提问的误区与对策

★怎样发掘数学题中的隐含条件

★数学概念探索式教学

★从一个实际问题谈概率统计教学

★教学媒体在数学教学中的作用

★数学问题解决及其教学

★数学概念课的特征及教学原则

★数学美与解题

★创造性思维能力的培养和数学教学

★教材顺序的教学过程设计创新

★排列组合问题的探讨

★浅谈初中数学教材的思考

★整除在数学应用中的探索

★浅谈协作机制在数学教学中的运用

★课堂标准与数学课堂教学的研究与实践

★浅谈研究性学习在数学教学中的渗透与实践

★关于现代中学数学教育的思考

★在中学数学教学中教材的使用

★情境教学的认识与实践

★浅谈初中代数中的二次函数

★略论数学教育创新与数学素质提高

★高中数学“分层教学”的初探与实践

★在中学数学课堂教学中如何培养学生的创新思维

★中小学数学的教学衔接与教法初探

★如何在初中数学教学中进行思想方法的渗透

★培养学生创新思维全面推进课程改革

★数学问题解决活动中的反思

★数学:让我们合理猜想

★如何优化数学课堂教学

★中学数学教学中的创造性思维的培养

★浅谈数学教学中的“问题情境”

★市场经济中的蛛网模型

★中学数学教学设计前期分析的研究

★数学课堂异教学

★一种函数方程的解法

★浅析数学教学与创新教育

★数学文化的核心—数学思想与数学方法

★漫话探究性问题之解法

★浅论数学教学的策略

★当前初中数学教学存在的问题及其对策

★例谈用“构造法”证明不等式

★数学研究性学习的探索与实践

★数学教学中创新思维的培养

★数学教育中的科学人文精神

★教学媒体在数学教学中的应用

★直觉思维在解题中的应用

★数学几种课型的问题设计

★数学教学中的情境创设

★在探索中发展学生的创新思维

★精心设计习题提高教学质量

★对数学教育现状的分析与建议

★创设情景教学生猜想

★反思教学中的一题多解

★在不等式教学中培养学生的探究思维能力

★浅谈数学学法指导

★中学生数学能力的培养

★数学探究性活动的内容形式及教学设计

★浅谈数学学习兴趣的培养

★浅谈课堂教学的师生互动

★新世纪对初中数学的教材的思考

★数学教学的现代研究

★关于学生数学能力培养的几点设想

★在数学教学中培养学生创新能力的尝试

★积分中值定理的再讨论

★二阶变系数齐次微分方程的求解问题

★浅谈培养学生的空间想象能力

★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育

★培养学生学习数学的兴趣

★课堂教学与素质教育探讨

★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施

★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中生的转化问题

★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣

★数学教学中探究性学习策略

★论数学课堂教学的语言艺术

★数学概念的教与学

★数学教学中的情商因素

★浅谈创新教育

★培养学生的数学兴趣的实施途径

★论数学学法指导

★学生能力在数学教学中的培养

★浅论数学直觉思维及培养

★论数学学法指导

★优化课堂教学焕发课堂活力

★浅谈高初中数学教学衔接

★如何搞好数学教育教学研究

★浅谈线性变换的对角化问题

本科数学范文:高等数学教学中体现数学建模思想的方法

生产是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。

1数学建模在煤矿安全生产中的意义

在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。

只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。

2煤矿生产的优化方法

生产是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性。为了成功解决这个复杂的问题,现将常用的生产分为两个大类。

2.1基于数学模型的方法

(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。

(2)控制方法这种方式应用理论上的控制方法对生产进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。

2.2基于人工智能方法

(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。

(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。

3煤矿安全生产中数学模型的优化建立

根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。

3.1建立简化模型

3.1.1模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。

很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式

式中x2---B工作面瓦斯体积分数;

u2---B工作面采煤进度;

w1---B矿井所对应的空气流速;

w2---相邻A工作面的空气流速;

a2、b2、c2、d2---未知量系数。

CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】

式中x3、x4---C、D工作面的瓦斯体积分数;

a3、b3、c3、d3---未知量系数:

f1、f2---A、B工作面的瓦斯涌出量。

3.1.2系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。

3.2模型的转型及其离散化

因为这数学研究生论文题目个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】

在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=0.5就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若0.5表示通风口的开通程度是0.5,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到。

依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。

3.3模型的应用效果及降低瓦斯体积分数的措施

以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。

4结语

应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。

参考文献:

[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.

[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.

[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.

谈一谈对高等数学的认识

38、基于偏微分方程理论的机械故障诊断技术研究

从数学相关的方向来讲,学好高等数学,才能学好概率论与数理统计。二者一脉相承!

12、论代数中同构思想在解题中的应用

2.学好高等数学和数理统计后,才能读得动一些专业书籍。比如计算机专业的算法分析与设计。否则,一天看不懂一页。

6、组合数学中的代数方法

3.学好高等数学,才能学好大学物理,否则,也是看不懂。

4.学好高等数学,才能写出有质量的论文,一篇好的论文里,会有大量数学推倒,设计高数、线性代数等等许多知识。

总的来说,如果想改变自己认识事物的思维方式,让自己对一个现象的规律把握得更好,高数,必不可少!

大学生数学建模论文范文?

篇1

数学建模作为一种数学学习方式,是培养学生应用数学的意识,培养数学素养的一种形式。下文是我为大家蒐集整理的关于的内容,欢迎大家阅读参考!

19、数学新课程教材教学探索

浅谈高职数学建模实践

摘 要: 本文简述了数学建模及其发展历史,探讨了高职数学建模活动设计和实施情况,并分三个方面进行了有效实践。

: 高职数学教学 数学建模 数学应用

随着教育改革的深入进行和“数学应用意识”的加强,知识经济对高职数学提出了新的要求。高职数学教学应以运用数学解决实际问题为目标,以数学建模作为改革的切入点,让学生在建模过程中学会用数学思维去认识和思考自己所生活的环境与[1],培养学生的创新思维能力和综合素质。

一、数学模型、数学建模和数学建模发展沿革[2]

数学模型还没有统一准确的定义,一般来说,“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,对于一个现实世界的一个特定物件,为了一个特定目的,根据其特有的内在规律,作出必要的简化设,运用适当的数学工具,得到的一个数学结构。涉及实际问题的数学模型,还具有抽象性、准确性、非预制性和演绎性等特性。数学模型按模型的表现特性和所描述的不同的现象和过程,大致有四种:确定性数学模型、随机性数学模型、变突性数学模型和模糊性数学模型。当然,由于现实世界关系的复杂性和多样性,有些数学模型也可能是兼有几类特性的混合型数学模型。

数学建模即为建立数学模型的过程。建模即是对研究物件进行科学的分析、简化、抽象的过程。运用数学建模解决实际问题的一般步骤是:模型准备—模型设—模型构成—模型求解—模型分析—模型检验—模型应用。

早在上世纪70年代,国外不少发达的有识之士已经开始研究开展数学建模活动,各种建模案例相继出现。大约在上世纪70年代末80年代初,英国的剑桥大学专门为研究生开设了数学建模,并建立了牛津大学与工业界研究合作的“OSGI”。与此同时,在欧洲、在美国等工业发达开始把数学建模的内容正式列入研究生、大学生乃至中学生的教学中,并于1983年开始举行两年一次的“数学建模和应用的教学会议”进行定期交流。80年代以后,数学建模已成为数学教育改革的主旋律,世界各国的课程标准也都要求在各年级或多或少地含有数学建模内容。我国工业与应用数学学会从1992年开始举办了“全国大学生数学模型联赛”,并发展成为现在的“全国大学生数学建模竞赛”。以数学建模竞赛为契机,国内很多大学将数学建模融入数学课程教学中,并将数学建模和数学实验等相关课程设定为基础课、必修课,培养学生的数学综合能力。数学教学必须适应实际需要,数学建模进入高职院校的课堂,既符合数学教改需求,又顺应发展大潮。对于高职数学教育教学而言,不仅需要让学生掌握数学计算方法和逻辑思维,更需要培养学生用数学工具和数学软体分析和解决实际问题的意识和能力。传统的高职数学课程教学体系无疑偏重于前者,引入数学建模则是加强后者的一种有益尝试。

二、高职数学建模活动设计

1.高职数学建模的活动设计目标

①系统地获得数学建模的基本知识、基本理论和方法。②培养数学应用意识,体现数学的实际应用价值。③提高学生学习数学的兴趣,培养学生学会团结合作,提高分析和解决实际问题的能力。④了解数学建模过程,培养数学创新能力和数学建模综合素质。

2.高职数学建模的活动设计原则

3.高职数学建模的活动设计内容

①理论知识方面:根据理论结合实际的原则,要求学生重点掌握数学模型的建立和求解方法。基本掌握的内容:初等模型、数学规划模型、微分方程模型、图论与网路模型、概率统计模型等。②实展的。践技能方面:要求学生重点掌握资料处理的基本方法,能够使用Lindo、Lingo求解各种规划问题,使用Matlab求解微积分和微分方程,进行资料拟合,引数估计、设检验、回归分析等概率问题。

1.将数学建模融入高职数学主干课程

数学教学中引入数学建模,关键是要以生活实际应用来汇入案例,从金融、工程、美学、经济等方面创设真实学习情境。近几年来我们一直把数学建模和数学课程有机结合起来,从学习情况来看,已初见成效。通过数学教学中数学建模的应用,学生更加体会到数学知识的重要性,更加重视数学的学习。将数学建模融入高职数学主干课程,在教学中积极推进教学改革,各模组综合复习中加入数学建模和数学上机实验知识,较好地调动了学生的学习积极性。

2.积极开设数学建模相关选修课

在《中长期教育改革和发展规划纲要》和《教育资讯化十年发展规划》的指引下,为了进一步促进资讯化教学,我们摒弃了传统的数学教育方法,教学中多次尝试数学建模和数学试验。自2005年以来,我们一直对大一大二的学生开设了《数学模型》、《数学实验》、《数学建模与数学实验》等选修课,受到学生的热烈欢迎。课程的开设对全面培养大学生数学素质和有关专业所需要的数学知识起到了很大的促进作用。通过多位老师的实践和探索,由谢珊主编,刘志峰主审,吕靖、覃东君和陶盈老师参编的《数学建模与数学实验》校本教材已正式投入使用,这本书得到了师生普遍好评。

3.认真组织数学建模活动

学院数学教研室教师每年认真组织学院的高等数学竞赛和数学建模活动,丰富了学生的课余生活,在数学建模竞赛中也取得了一定的成绩:获得二等奖一次,获得省二等奖两次,获得省三等奖两次。实践证明,积极参与数学建模知识学习的学生在毕业之后发展潜力更大,无论是从学生受益面,还是在提高大学生综合素质方面,数学建模教学改革模式都取得了很好的成效[3]。

高职数学中融入数学建模对学生综合素质的培养是一项长期艰钜而有意义的工作。教师要根据学生的实际水平,进行准确的定位,寻找数学建模教学的起始点和切入点,提高学生的应用和建模能力,使他们能够自觉地应用数学的思想和方法去分析观察理解和解决问题,增强迎接未来竞争的能力,将数学建模思想融入教学中,使抽象的教学内容具体化、清晰化,使学生主动学习,积极思考,重视数学应用,从而提高了教学质量[4]。学无止境,数学建模融入高职数学教学改革应随着数学实践和教学经验的积累,及时补充新鲜血液。数学建模在我院的推广普及,培养了学生的综合素质和实践能力,对数学教学改革起到了推动作用。

参考文献:

[1]谢珊等.更新高职数学教育理念深化教学改革[J].现代企业教育,201111:58.

[2]姜启源,谢金星,叶俊.数学模型[M].:高等教育出版社,2003:3-18.

[3]曹秀娟等.数学建模大众化教学改革模式的探索[J].校外教育,201011:130-131.

[4]孟玲.高职数学建模教学的策略与方法刍议[J].教育与职业,201111:107.

<<<下页带来更多的

论文前言怎么写?600--1000字。 题目是《高等数学解题过程中的常见误区及对策》

5富的和合思想。其具体体现是整体系统性、平衡稳定性、有序对称性。、高中新教材中数学教学方法探讨。

前言是正文“章”之前的一章。前言的写作应该包括研究综述,提出自己论文的研究范围和研究观点。

三、我院高职数学建模活动实践

1.研究综述

写作一定要有研究综述,也叫综述报告。研究综述是梳理本论文研究对象的历史、现状、发展趋势,并且对这些研究作出评价。确定自己研究的逻辑起点,在别人研究的基础上自己将要做的探讨。

在我审阅的学位论文中,研究综述存在的问题主要表现在过于简略,缺少分析评价。有的只是开列出了别人研究的论著,没有任何分析,以开列篇目代替自己的综述。有的研究综述占了整个论文的一半内容,以综述代替自己观点的论述。

2.研究观点

前言除了写作研究综述外,还要陈述自己的研究观点,自己在本论文中将要讨论什么问题,提出的观点是什么。对涉及论文观点的作出界定,自己是在什么范围讨论这个问题,怎样使用这个观点。这样做,可以使自己的观点明确,重点突出,别人看得明白。也避免了对讨论范围和的歧义。

前言的内容要清楚明白,也有章节标题。

3.研究内容的总体描述

学位论文的分析方法,一般遵循两种程序,一是逻辑分析性程序:“分析—综合”,二是系统综合性程序:“综合——分析——综合”。我认为采用系统综合性程序,具有高屋建瓴,提纲挈领的作用。综合性程序的前一个“综合”是前言中,把研究对象看作一个综合体,对自己的观点进行总体描述。“分析”就是在综合的基础上,把各个部分按照章节进行分观点的探讨,每一次分析的结果都反馈到上一层次的综合上。后一个“综合”就是在论文的结语部分,总结全文的研究,概括自己的论文观点。

因此,前言提出自己的研究观点,还需要进一步从整体上阐述自己的研究内容,也就是对自己的论述内容做一个系统的总体描述。这种总体描述相当于论文的摘要。便于读者一目了然地把握自己论文的论述观点和论述内容。也为下文进入章的论述做准备。也许有同学会说,我已经在论文摘要中谈了自己的研究内容,不必在前言中再谈论述内容。两者是不同的,前言属于学位论文的正文,在正文中应该对自己的研究内容做一个综合描述。读者可以不看你的摘要,但是要看你的正文。如果你不在前言对自己的研究内容做一个总体描述,你就错过了让读者了解你的论文总貌的一个机会,增加了读者了解你的论文观点的困难。你让读者一头雾水,半天找不到你的观点是什么。读者看不明白,也许就不愿意或者不耐烦看了。

数学文化论文

★中学数学中的化归方法

浅谈数学文化中的和合思想

12、情境认识在数学教学中的应用。

和合是我国传统文化的一个重要概念。“和”是平和、和谐、祥和、协调

的意思。“合”是合作、对称、结合、统一的意思。和合思想认为,整个物质

世界是一个和谐的整体,宇宙、自然、、精神各元素都处在一个和谐的

优化结构中。而数学文化系统就是一个完美的和谐优化结构。数学文化

中的数学发展史、数学哲学思想、数学方法、数学美育等重要内容蕴含着丰

一、整体系统性

1.数学公理系统的相容性

数学的公理化系统具有相容性、性和完备性。在这三项基本要求

中,最主要的是相容性。相容性就是不矛盾性或和谐性,是指各公理不能

互相抵触,它们推导的真命题也不能互相矛盾,公理系统的相容性是数学

系统和谐的基础,也是基本要求。

除了数学各分支自身要形成相容的公理系统之外,数学还要求各分支

之间互相协调,不能互相抵触。有的系统之间,还形成密切的同构关系,在

不同的数学系统之间,相容性是一致的。例如欧氏几何与非欧几何(罗式

几何、黎曼几何)中平行公理是互否的命题,可在欧氏几何中构造非欧几何

的模型,所以可以这样说只要欧氏几何无矛盾,那么非欧几何也是无矛

盾的。

2.数算系统的完整性

数学的运算法则、运算公式、运算结论都是完整的、准确的。特别是数

学的运算语言,它把文字语言、符号语言、图像语言完全融合到一个统一体

中,互相印证、互相诠释、互相转化,达到了天衣无缝的完美。当扩充数系

时,要建立新的理论和运算拓广原有运算和关系时,要尽量保持原有的运

算、关系的一致性,如有不一致,必须作一规定,使新系统与原有系统和谐。

3.数学推理系统的严密性

在我们日常的数学活动中,常常用到反证法,在这种方法中,往往不仅

要用到系统的公理和定理,而且要用到其他分支的知识。在整个推理过程

中要和谐。例如古希腊三大问题之一化圆为方,即作一个与给定圆面

积相等的正方形。要证明用圆规和直尺不能作出等面积的正方形就需要

用到数“=”的超越性。

在数学上的等式、解析式中出现“=”是和谐的体现。

二、平衡稳定性

“和合思想”认为天地自然万物处于平衡、和谐、有序的状态。各个事

物、要素互依、互涵、互补,处于全面的、立体的相互作用的过程之中。而数

学的平衡稳定性很好地体现了和合思想。

1.数学发展的平衡稳定

数学科学与其它学科相比,一个重要的特点就是历史的累积性、发展

的平衡稳定性。也就是说重大的数学理论总是在继承和发展原有理论的

基础上建立起来的,他们不仅不会推翻原有的理论,而且总是包容原有的

理论。比如天文学的“地心说”被“日心说”所代替,物理学中关于光的“粒

子说”被“波动说”代替,化学中的“燃素说”被“氧化说”代替等等,而数学

从来没有发生过这样的情况。这正如一位数学史家H?汉科尔所说:“在

大多数学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个

人所破坏,唯独数学,每一代人都在古老的大厦上添加一层楼”。数学的这

一平衡稳定性,正是数学学科能不断焕发出无限活力和强大生命力根源。

2.数学学习过程的平衡稳定

识的过程不外乎“同化—顺应—平衡”这样一个相对稳定的过程。同化就

是把新的知识纳入已有的认知结构,使原有的知识体系不断得到充实丰

富。顺应就是新的知识不能纳入原有的认知结构,就要对原有认知结构进

行改造和提高,从而建立新的认知结构。平衡就是同化和顺应后,都有一

个巩固阶段,在这一阶段对知识的理解和内化是平衡稳定的。人们对数学

知识的学习正式在“同化—顺应—平衡”这样一个循环往复的过程中发

3.数学方法的平衡稳定

数学方法是认识数学客体过程中某种有规律的程序和手段,使理论用

于实践的中介,各种方法都和谐地存在在数学这个共同体中。比如常用的

数学思维方法:观察、分析、综合、抽象、猜想、类比、归纳、演绎;还有常用的

数学解题方法:比较方法、结构方法、模型方法、构造方法、化归方法、映射

反演法、几何变换法、公理化方法等。这些方法,无论是在初等数学中,还

是在高等数学中;无论是在几何学中,还是在代数学中,都在广泛的运用,

始终处于平衡稳浅谈小学应用题教学定状态中,不会因时间、空间、以及学科的变化发生变异。

几何变换思想和方法,就是用运动和变化的观点去研究几何对象及其

相互关系,探讨图形运动过程中不变的关系、不变量和变化关系、变化量,

从中找出规律。在解题过程中,对图形有关部分进行变换,化不规则为规

则,化一般为特殊,化不利条件为有利条件。

三、有序对称性

“凡物必有合”,“合”就是对称、结合、统一。整个世界不仅和谐合理,

而且阴阳和合的对称。

1.数学的有序对称美

在初等数学中研究的对称性,可以描述的是一个图形、一个式子各个

部分的关系,也可以描述两个图形、式子的关系。图形、式子的变换显示着

数学中的对称美。

图形对称可称为狭义对称,例如中心对称图形、轴对称图形、旋转对称

图形是图形位置的一种对称。显示一种对称的美。

在许多概念中和方法、命题、公式、法则中也存在对称性,也可称为一

种对称。

在数学中,许多概念都是一正一反,相辅相成,成对出现的。例如数学

运算中加与减、乘与除、乘方与开方、微分与积分等,都可认为是一阴一阳

的对称;减一个负数可变成加一个正数,除可以变成乘的运算,所以说它们

之间又是统一有序的。在二元运算中通过交换律、结合律、分配律来反映

其对称性。

2.数学解题过程的有序结构

从文化的角度审视数学解题过程它是数学策略、数学逻辑、数学方法、

数学知识、数学技能与程式化的有机结合,是一个有序结构的统一体。比

如解方程过程的基本步骤是:去分母、去括号、移项合并、两边同除以未知

数的系数。这是一个和谐的有序结构。破坏了这个有序结构,就会发生解

题障碍。从思维过程看,它是“观察———联想———转化”这样一个有序过

程。观察是联想的基础,在观察中认识所给题目的特征;联想是转化的桥

梁,在联想中寻找解题途径;转化是解题的手段,在转化中确定解题方案,

从而最终解决问题。

数学无论是从整体和局部,形式和内容,还是结果和过程都体现着和

合思想的精神和内涵。我们用“和合思想”重新认识数学,发挥数学文化在

教学中的教育功能,就能有效地培养学生科学素养和文化素养。

参考文献:

[1]齐民友.数学文化[M].长沙:湖南教育出版社,19.

[2]张维忠.数学文化与数学课程[M].上海:上海教育出版社,1999.

[3]郑毓信.数学文化学[M].成都:四川教育出版社,2001.

[4]李文林.数学史教程[M].高教出版社.

高等数学洛必达法则论文

人们对知识的学习过程都含有一定的认知结构。而学生学习数学知

洛必达★优化课堂教学推进素质教育(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。

洛必达法则(定理)

设函数f(★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计x)和F(x)满足下列条件:

(1)x→a时,lim f(x)=0,lim F(x)=0;

(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;

(3)x→a时,lim(f'(x)/F'(x))存在或为无穷大

则 x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))

大一数学论文 发我邮箱 急用 微积分导数等 大一上学期水平。。。

13、数学建模实例——河西学院校内充电站选址问题

微积分的产生是数学上的伟大创造。它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作者以及技术人员不可缺少的工具

综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。

导数、微分等。

积分学的主要内容包括:定积分、不定积分等。

其中最主要的是一元微积分和多元微积分,也是本门课程的重点和难点。占据教材的百分之八十,具有《高等数学》(一)考试中试题分数在八十五分以上内容。一元微积分和多元微积分是以极限为基础,对函数性质进行研究。一元函数微分学、积分学,是函数26、不等式的证明方法的自变量为一个变元的微积分学。只有掌握了一元微积分,才能学好多元微积分,而微分方程初步又是微积分的延伸和应用。因此,学员要学好《高等数学》,就必须需学好函数的极限,进一步学好一元函数微积分。无穷级数这一部分是相对的,但也不是很容易掌握的。另外一个重点是数学在经济中的应用问题,在利用函数的导数求极值,进行弹性分析等方面的应用应该引起学员的重视。

微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。

要如何才能学好微积分呢?这里我发表一些我个人的观点,希望对大家有点帮助.

1. 我认为,一定要把教材看懂,我次微分方程部分来不及看,结果微分方程部分的题目不会做,就4分,我如果做了一道微分方程的5分题就不用再考第二次了。

2. 一定要把书后的练习题做一遍,因为只有不断的练习(特别是理科类的课程)才能提高解题技巧和记住公式。做完之后就对着书后的看是否做错,做错在什么地方,通过分析就可以尽量避免在考试时犯同样的错误。

3. 在看教材时,先把教材看完一节就做一节的练习,看完一章后,要特别注意书后的“结束语”部分,通过看小结对整一章的内容进行总复习,根据“本章的基本要求”和“对学习的建议”两部分的要求,掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容。建议多看小结部分,可以使你学习的目的明确,有的放矢,不必花太多时间在次要(不要求掌握部分)内容上。每看完一章就反复琢磨书后的小结(每一章的小结部分要看不多4、5遍),找准重点后再重新把书中的重点知识学习第二遍,力求一定掌握重点知识,并会做相应的习题。

4. 快考试前的一个月,做几套考试的试题,或是老师发的练习,了解一下考试出题的类型和看那一部分内容在考试中占的分数比较多,对于分数少而又比较难的部分,在时间不够时可以有选择地放弃。

5. 对于书中不会做的题目或者是看不懂的例题,如果身边有朋友可以请教就请教,力求书中要求掌握的都会做。身边没有人可以请教,就同老师共同讨论研讨,使自己在讨论中得到提高。

以上是我的个人意见.我认为,付出的劳动与成绩是成正比的,早日开始学习,花多一点时间学习,成功的机会就越大!

关于数学方向的论文题目

e1、e2---A、B工作面的瓦斯体积分数;

在人类历史发展和生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。关于数学方面的论文我们可以写哪些呢?下面我给大家带来关于数学方向的论文题目有哪些,希望能帮助到大家!

最全组合数学论文题目

1、并行组合数学模型方式研究及初步应用

2、数学规划在非系统风险投资组合中的应用

3、金融经济学中的组合数学问题

4、竞赛数学中的组合恒等式

5、概率 方法 在组合数学中的应用

7、组合电器局部放电超高频信号数学模型构建和模式识别研究

8、概率方法在组合数学中的某些应用

9、组合投资数学模型发展的研究

10、高炉炉温组合预报和十字测温数学建模

11、证券组合的风险度量及其数学模型

12、组合数学中的Hopf方法

13、PAR方法在组合数学问题中的应用研究

14、概率方法在组合数学及混合超图染色理论中的应用

15、一些算子在组合数学中的应用

16、陀螺/磁强计组合定姿方法的相关数学问题研究

17、高中数学人教版新旧教材排列组合内容的比较研究

18、生物絮凝吸附-曝气生物滤池组合工艺处理生活污水的数学模拟研究

19、基于数学形态学-小波分析组合算法的牵引网故障判定方法

20、证券组合投资的灰色优化数学模型的研究

21、一些算子在组合数学中的应用

22、概率方法在组合数学中的应用

23、组合数学中的Hopf方法

24、概率方法在组合数学中学数学论文题目中的某些应用

25、概率方法在组合数学及混合超图染色理论中的应用

26、竞赛数学中的组合恒等式

27、Stern-Lov醩z定理及在组合结构中的应用

28、几类特殊图形的渐近估计及数值解

29、Fine格路和有禁错排

30、基于DFL的Agent自主学习模型及其应用研究

31、基于DFL的多Agent自动推理平台设计

32、预应力混凝土斜拉桥施工概率方法研究

33、概率方法与最近邻准则下的图像标注

34、亚式期权定价的偏微分方程方法和概率方法

35、编目空间碎片的碰撞概率方法研究及应用

36、基于概率方法的机器人定位

37、民用建筑内部给水设计秒流量的概率方法研究

38、图论中的组合方法和概率方法

39、物理概率方法预估贮存寿命研究

40、静载下结构参数识别的误分析和概率方法

41、概率方法在组合计数证明中的应用

42、基于非概率方法的结构全寿命总费用评估

43、概率方法在组合数学中的应用

44、概率方法与邻点可区别全染色的色数上界

45、既有钢筋混凝土结构耐久性评定的概率方法

46、概率方法在多任务EEG脑机接口中的应用研究

47、应用概率方法对居住小区给水设计秒流量的推求

48、概率方法与图的染色问题

49、概率方法对居住小区设计秒流量的推求

50、概率方法在组合数学中的某些应用

51、概率方法在组合恒等式证明中的应用

52、遗传算法的研究与应用

53、基于空间算子代数理论的链式多体系统递推动力学研究

54、关于Weidmann猜想及具有转移条件微分算子的研究

55、实数编码遗传算法杂交算子组合研究

56、基于OWA算子理论的混合型多属性群决策研究

57、序列算子与灰色预测模型研究

58、具有转移条件的Sturm-Liouville算子和具有点作用的Schrodinger算子谱分析的研究

59、高精度径向基函数拟插值算子的构造及其应用

60、多线性算子加权Hardy算子与次线性算子的相关研究

数学建模论文题目

1、高中数学核心素养之数学建模能力培养的研究

2、小学数学建模数字化教学的设计与实施策略——以“自行车里的数学问题”为例

3、培养低年段学生数学建模意识的微课教学

4、信息化背景下数学建模教学策略研究

5、数学建模思想融入解析几何的实际应用探讨

6、以数学建模为平台培养大学生创新能力的SWOT分析──以内蒙古农业大学为例

7、基于高等数学建模思维的经济学应用

8、以数学建模促进应用型本科院校数学专业的发展27、数列问题研究

9、高等代数在数学建模中的应用探讨

10、融入数学建模思想的线性代数案例教学研究

11、以“勾股定理的应用”为例谈初中数学的建模教学

12、经管概率统计中的数学建模思想研究——评《经管与 财税 基础》

14、基于数学建模探讨高职数学的改革途径

15、大数据时代大学生数学建模应用能力的提升研究

16、“数学写作之初见建模”教学设计及思考

17、大学数学教学过程中数学建模意识与方法的培养简析

18、基于建模思想的高等数学应用研究

19、小学数学建模教学实践

20、依托对口支援平台培养大学生的数学建模能力

21、跨界研究在数学建模教与学中的应用

23、数学建模对大学生综合素质影响的调查研究

24、计算机数学建模中改进遗传算法与最小二乘法应用

25、数学建模在高中数学课堂的教学策略分析

26、发动机特性数字化处理与数学建模

27、数学建模中的数据处理——以大型百货商场会员画像描绘为例

28、数学建模竞赛对医学生 学习态度 和自学能力的影响

29、数学建模思想与高等数学教学的融会贯通

30、试论数学建模思想在小学数学教学中的应用

31、浅析飞机地面空调车风量测控系统数学建模及工程实施

32、高中数学教学中数学建模能力的培养——基于核心素养的视角

33、注重数学建模 提炼解题思路——对中考最值问题的探究

34、在数学建模教学中培养思维的洞察力

35、刍议数学建模思想如何渗透于大学数学教学中

36、数学建模竞赛背景下对高校数学教学的思考

37、数学建模课程对高职学生创新能力的培养探究

38、高等数学教学中数学建模思想方法探究

39、初中数学教学中数学建模思想的渗透

40、激光通信网络海量信息快速调度数学建模

41、基于多元线性回归模型的空气质量数据校准——2019年大学生数学建模竞赛D题解析

42、中学数学建模教学行为探究

43、数学建模竞赛成果诊断倒逼教学资源库优化的机制研究

44、基于数学建模活动的高校数学教学改革

45、数学建模与应用数学的结合研究

46、谈初中数学建模能力的培养

47、数学建模在初中数学应用题解答中的运用

48、基于数学建模思想的高等数学 教学方法 研究

49、数学建模融入高等数学翻转课堂模式研究

50、数学软件融入数学建模课程教学的探讨

小学数学教学论文题目

小学数学教材问题探析

小学数学生活化教学研究

小学数学___教学方法有效性分析

小学数学多媒体课件设计研究

小学生数学思维培养探究

小学数学中创新意识的培养

数学作业批改中巧用评语

新课标下小学数学教学改革研究

数学游戏在小学数学教学中的应用

《9和几的进位加法》教学设计

小学数学教学中素质 教育 研究

小学数学学困生的转化策略

小学数学教学中的情感教育

《六的乘法口诀》教学 反思

浅谈数学课堂中学生问题意识的培养

问答式学习课堂教学怎样转向小组合作学习

浅谈农村课堂的有效交流

浅谈在实践活动中提高学生解决实际问题的能力

浅谈学生合作意识的培养

“层次性体验”在数学课堂中的应用

数学课堂教学中学生探索能力的培养

小学数学低段学生阅读能力培养点滴

“观察、 品味、 顿悟” 我谈小学数学空间与图形教学

浅谈小学数学课堂教学中的“留白”

润物细无声--小班化数学作业面批有效策略的尝试

“我的妈妈体重 50 千克” 对培养良好数感的思考

“圆的面积” 教学一得

利用图解法解决逆推题

我教《24 时计时法》

《解简易方程》 教学反思

“可能性” 的反思

折线统计图折射出的“光芒”

《平均数》 教学反思

数学课堂上的“失误“也是一种资源

幽默语言在教学中的应用

计算机多媒体与小学数学教学的整

充分发挥学生的主体作用

“圆柱的体积” 教学反思

“平行四边形的面积” 听课反思

听“逆向求和应用题” 有感

小学低年级教学策略的实践与反思

“相遇问题” 建立“数学模型”

如何提高课堂语言评价的有效性

“20 以内退位减法” 教学反思

关于数学方向的论文题目相关 文章 :

★ 关于数学专业题目

★ 数学方面题目参考大全

★ 关于数学专业题目参考

★ 数学的论文

★ 数学论文范文

★ 数学学术论文的题目

★ 数学教育论文题目

★ 数学教育方向的论文范文

★ 数学教育方向相关论文(2)