八年级上册数学期末试卷人教版 八年级上册数学期末考试试卷人教
初二数学期末试卷及浙教版
AD的对应边是AE而非DE,所以D错误.读书是一种清福,这种境界被吴延康说得直白:“读书身健即是福,种树开花亦是缘。”好一个读书人,好一片读书的心境。我们不是哲学家,能从一滴水中看世界,从一朵花中参悟人生,但我们可以像吴延康这样,静静地做个读书人,在一片芸芸众生里感悟人生收获快乐。下面给大家分享一些关于初二数学期末试卷及浙教版,希望对大家有所帮助。
八年级上册数学期末试卷人教版 八年级上册数学期末考试试卷人教
八年级上册数学期末试卷人教版 八年级上册数学期末考试试卷人教
一、选择题(每小题3分,9小题,共27分)
1.下列图形中轴对称图形的个数是()
A.1个B.2个C.3个D.4个
【考点】轴对称图形.
【分析】根据轴对称图形的概念求解.
【解答】解:由图可得,个、第二个、第三个、第四个均为轴对称图形,共4个.
故选D.
【点评】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
2.下列运算不正确的是()
A.x2?x3=x5B.(x2)3=x6C.x3+x3=2x6D.(﹣2x)3=﹣8x3
【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.
【分析】本题考查的知识点有同底数幂乘法法则,幂的乘 方法 则,合并同类项,及积的乘方法则.
【解答】解:A、x2?x3=x5,正确;
C、应为x3+x3=2x3,故本选项错误;
D、(﹣2x)3=﹣8x3,正确.
故选:C.
【点评】本题用到的知识点为:
同底数幂的乘法法则:底数不变,指数相加;
幂的乘方法则为:底数不变,指数相乘;
合并同类项,只需把系数相加减,字母和字母的指数不变;
积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.
3.下列关于分式的判断,正确的是()
A.当x=2时,的值为零
B.无论x为何值,的值总为正数
C.无论x为何值,不可能得整数值
D.当x≠3时,有意义
【考点】分式的值为零的条件;分式的定义;分式有意义的条件.
【分析】分式有意义的条件是分母不等于0.
分式值是0的条件是分子是0,分母不是0.
【解答】解:A、当x=2时,分母x﹣2=0,分式无意义,故A错误;
B、分母中x2+1≥1,因而第二个式子一定成立,故B正确;
D、当x=0时,分母x=0,分式无意义,故D错误.
故选B.
【点评】分式的值是正数的条件是分子、分母同号,值是负数的条件是分子、分母异号.
4.若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()
A.﹣20B.﹣16C.16D.20
【考点】因式分解-十字相乘法等.
【专题】计算题.
【分析】把分解因式的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m的值即可.
【解答】解:x2+mx+36=(x﹣2)(x﹣18)=x2﹣20x+36,
可得m=﹣20,
故选A.
【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.
5.若等腰三角形的周长为26cm,一边为11cm,则腰长为()
A.11cmB.7.5cmC.11cm或7.5cmD.以上都不对
【考点】等腰三角形的性质.
【分析】分边11cm是腰长与底边两种情况讨论求解.
【解答】解:①11cm是腰长时,腰长为11cm,
②11cm是底边时,腰长=(26﹣11)=7.5cm,
所以,腰长是11cm或7.5cm.
故选C.
【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.
6.如图,在△ABC中,AB=AC,∠BAC=108°,点D在BC上,且BD=AB,连接AD,则∠CAD等于()
A.30°B.36°C.38°D.45°
【考点】等腰三角形的性质.
【分析】根据等腰三角形两底角相等求出∠B,∠BAD,然后根据∠CAD=∠BAC﹣∠BAD计算即可得解.
【解答】解:∵AB=AC,∠BAC=108°,
∴∠B=(180°﹣∠BAC)=(180°﹣108°)=36°,
∵BD=AB,
∴∠BAD=(180°﹣∠B)=(180°﹣36°)=72°,
∴∠CAD=∠BAC﹣∠BAD=108°﹣72°=36°.
故选B.
【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,等边对等角的性质,熟记性质并准确识图是解题的关键.
7.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()
【考点】全等三角形的性质.
∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,
故A、B、C正确;
故选D.
【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.
8.计算:(﹣2)2015?()2016等于()
A.﹣2B.2C.﹣D.
【考点】幂的乘方与积的乘方.
【分析】直接利用同底数幂的乘法运算法则将原式变形进而求出.
【解答】解:(﹣2)2015?()2016
=[(﹣2)2015?()2015]×
=﹣.
故选:C.
9.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有()
A.1个B.2个C.3个D.4个
【考点】等腰三角形的判定.
【解答】解:要使△OAB为等腰三角形分三种情况讨论:
①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B,此时有1个;
②当OA=AB时,以点A为圆心,OA为半径作圆,与直线b的交点,此时有1个;
③当OA=OB时,以点O为圆心,OA为半径作圆,与直线b的交点,此时有2个,
1+1+2=4,
故选:D.
【点评】本题主要考查了坐标与图形的性质及等腰三角形的判定;分类讨论是解决本题的关键.
二、填空题(共10小题,每小题3分,满分30分)
10.计算(﹣)﹣2+(π﹣3)0﹣23﹣|﹣5|=4.
【考点】实数的运算;零指数幂;负整数指数幂.
【专题】计算题;实数.
【分析】原式项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用乘方的意义化简,一项利用的代数意义化简,计算即可得到结果.
【解答】解:原式=16+1﹣8﹣5=4,
故为:4
【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
11.已知a﹣b=14,ab=6,则a2+b2=208.
【考点】完全平方公式.
【分析】根据完全平方公式,即可解答.
【解答】解:a2+b2=(a﹣b)2+2ab=142+2×6=208,
故为:208.
【点评】本题考查了完全平方公式,解决本题德尔关键是熟记完全平方公式.
12.已知xm=6,xn=3,则x2m﹣n的值为12.
【考点】同底数幂的除法;幂的乘方与积的乘方.
【分析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可.
【解答】解:x2m﹣n=(xm)2÷xn=36÷3=12.
故为:12.
【点评】本题考查了同底数幂的除法运算及幂的乘方的知识,属于基础题,掌握各部分的运算法则是关键.
13.当x=1时,分式的值为零.
【考点】分式的值为零的条件.
【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.
【解答】解:x2﹣1=0,解得:x=±1,
当x=﹣1时,x+1=0,因而应该舍去.
故x=1.
故是:1.
【点评】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
14.(1999?昆明)已知一个多边形的内角和等于900°,则这个多边形的边数是7.
【分析】根据多边形的内角和计算公式作答.
【解答】解:设所求正n边形边数为n,
则(n﹣2)?180°=900°,
解得n=7.
故为:7.
【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
15.如图,在ABC中,AP=DP,DE=DF,DE⊥AB于E,DF⊥AC于F,则下列结论:
①AD平分∠BAC;②△BED≌△FPD;③DP∥AB;④DF是PC的垂直平分线.
其中正确的是①③.
【考点】全等三角形的判定与性质;角平分线的性质;线段垂直平分线的性质.
【专题】几何图形问题.
【分析】根据角平分线性质得到AD平分∠BAC,由于题目没有给出能够证明∠C=∠DPF的条件,无法根据全等三角形的判定证明△BED≌△FPD,以及DF是PC的垂直平分线,先根据等腰三角形的性质可得∠PAD=∠ADP,进一步得到∠BAD=∠ADP,再根据平行线的判定可得DP∥AB.
【解答】解:∵DE=DF,DE⊥AB于E,DF⊥AC于F,
∴AD平分∠BAC,故①正确;
由于题目没有给出能够证明∠C=∠DPF的条件,只能得到一个直角和一条边对应相等,故无法根据全等三角形的判定证明△BED≌△FPD,以及DF是PC的垂直平分线,故②④错误;
∵AP=DP,
∴∠PAD=∠ADP,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BAD=∠ADP,
∴DP∥AB,故③正确.
故为:①③.
【点评】考查了全等三角形的判定与性质,角平分线的性质,线段垂直平分线的性质,等腰三角形的性质和平行线的判定,综合性较强,但是难度不大.
16.用科学记数法表示数0.0002016为2.016×10﹣4.
【考点】科学记数法—表示较小的数.
【分析】小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起个不为零的数字前面的0的个数所决定.
【解答】解:0.0002016=2.016×10﹣4.
故是:2.016×10﹣4.
【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起个不为零的数字前面的0的个数所决定.
17.如图,点A,F,C,D在同一直线上,AF=DC,BC∥EF,要判定△ABC≌△DEF,还需要添加一个条件,你添加的条件是EF=BC.
【考点】全等三角形的判定.
【专题】开放型.
【分析】添加的条件:EF=BC,再根据AF=DC可得AC=FD,然后根据BC∥EF可得∠EFD=∠BCA,再根据SAS判定△ABC≌△DEF.
【解答】解:添加的条件:EF=BC,
∵BC∥EF,
∴∠EFD=∠BCA,
∵AF=DC,
∴AF+FC=CD+FC,
即AC=FD,
在△EFD和△BCA中,
∴△EFD≌△BCA(SAS).
故选:EF=BC.
【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
18.若x2﹣2ax+16是完全平方式,则a=±4.
【考点】完全平方式.
【分析】完全平方公式:(a±b)2=a2±2ab+b2,这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.
【解答】解:∵x2﹣2ax+16是完全平方式,
∴﹣2ax=±2×x×4
∴a=±4.
【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.
19.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△AnBnAn+1的边长为2n﹣1.
【考点】等边三角形的性质.
【专题】规律型.
【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出.
【解答】解:∵△A1B1A2是等边三角形,
∴A1B1=A2B1,
∵∠【考点】分式方程的应用.MON=30°,
∵OA2=4,
∴OA1=A1B1=2,
∴A2B1=2,
∵△A2B2A3、△A3B3A4是等边三角形,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=8,
A4B4=8B1A2=16,
A5B5=16B1A2=32,
以此类推△AnBnAn+1的边长为2n﹣1.
故为:2n﹣1.
【点评】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.
三、解答题(本大题共7小题,共63分)
20.计算
(1)(3x﹣2)(2x+3)﹣(x﹣1)2
(2)(6x4﹣8x3)÷(﹣2x2)﹣(3x+2)(1﹣x)
【考点】整式的混合运算.
【分析】(1)利用多项式乘多项式的法则进行计算;
(2)利用整式的混合计算法则解答即可.
【解答】解:(1)(3x﹣2)(2x+3)﹣(x﹣1)2
=6x2+9x﹣4x﹣6﹣x2+2x﹣1
=5x2+7x﹣7;
(2)(6x4﹣8x3)÷(﹣2x2)﹣(3x+2)(1﹣x)
=﹣3x2+4x﹣3x+3x2﹣2+2x
=3x﹣2.
【点评】本题考查了整式的混合计算,关键是根据多项式乘多项式的法则:先用一个多项式的每一项乘另一个多项式的每一甲 乙 丙项,再把所得的积相加.
21.分解因式
(1)a4﹣16
(2)3ax2﹣6axy+3ay2.
【考点】提公因式法与公式法的综合运用.
【分析】(1)两次利用平方公式分解因式即可;
(2)先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.
【解答】解:(1)a4﹣16
=(a2+4)(a2﹣4)
=(a2+4)(a+2)(a﹣2);
(2)3ax2﹣6axy+3ay2
=3a(x2﹣2xy+y2)
=3a(x﹣y)2.
【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要,直到不能分解为止.
22.(1)先化简代数式,然后选取一个使原式有意义的a的值代入求值.
(2)解方程式:.
【考点】分式的化简求值;解分式方程.
【专题】计算题;分式.
【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a=2代入计算即可求出值;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【解答】解:(1)原式=[+]?=?=,
当a=2时,原式=2;
(2)去分母得:3x=2x+3x+3,
移项合并得:2x=﹣3,
解得:x=﹣1.5,
经检验x=﹣1.5是分式方程的解.
【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
23.在边长为1的小正方形组成的正方形网格中建立如所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形上)
(1)画出△ABC关于直线l:x=﹣1的对称三角形△A1B1C1;并写出A1、B1、C1的坐标.
(2)在直线x=﹣l上找一点D,使BD+CD最小,满足条件的D点为(﹣1,1).
提示:直线x=﹣l是过点(﹣1,0)且垂直于x轴的直线.
【考点】作图-轴对称变换;轴对称-最短路线问题.
【分析】(1)分别作出点A、B、C关于直线l:x=﹣1的对称的点,然后顺次连接,并写出A1、B1、C1的坐标;
(2)作出点B关于x=﹣1对称的点B1,连接CB1,与x=﹣1的交点即为点D,此时BD+CD最小,写出点D的坐标.
【解答】解:(1)所作图形如图所示:
A1(3,1),B1(0,0),C1(1,3);
(2)作出点B关于x=﹣1对称的点B1,
连接CB1,与x=﹣1的交点即为点D,
此时BD+CD最小,
点D坐标为(﹣1,1).
故为:(﹣1,1).
【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,并顺次连接.
24.如图,已知:AD平分∠CAE,AD∥BC.
(1)求证:△ABC是等腰三角形.
(2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论.
【考点】等腰三角形的判定;等边三角形的判定.
【分析】(1)根据角平分线的定义可得∠EAD=∠CAD,再根据平行线的性质可得∠EAD=∠B,∠CAD=∠C,然后求出∠B=∠C,再根据等角对等边即可得证.
(2)根据角平分线的定义可得∠EAD=∠CAD=60°,再根据平行线的性质可得∠EAD=∠B=60°,∠CAD=∠C=60°,然后求出∠B=∠C=60°,即可证得△ABC是等边三角形.
【解答】(1)证明:∵AD平分∠CAE,
∴∠EAD=∠CAD,
∵AD∥BC,
∴∠EAD=∠B,∠CAD=∠C,
∴∠B=∠C,
∴AB=AC.
故△ABC是等腰三角形.
(2)解:当∠CAE=120°时△ABC是等边三角形.
∵∠CAE=120°,AD平分∠CAE,
∴∠EAD=∠CAD=60°,
∵AD∥BC,
∴∠EAD=∠B=60°,∠CAD=∠C=60°,
∴∠B=∠C=60°,
∴△ABC是等边三角形.
【点评】本题考查了等腰三角形的判定,角平分线的定义,平行线的性质,比较简单熟记性质是解题的关键.
25.某工厂现在平均每天比原多生产50台机器,现在生产600台机器所需要的时间与原生产450台机器所需要的时间相同,现在平均每天生产多少台机器?
【专题】应用题.
【分析】本题考查列分式方程解实际问题的能力,因为现在生产600台机器的时间与原生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原生产450台时间.
【解答】解:设:现在平均每天生产x台机器,则原可生产(x﹣50)台.
依题意得:.
解得:x=200.
检验:当x=200时,x(x﹣50)≠0.
∴x=200是原分式方程的解.
答:现在平均每天生产200台机器.
【点评】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原多生产50台机器”就是一个隐含条件,注意挖掘.
26.如图,△ACB和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E三点在同一直线上,连结BD.求证:
(1)BD=CE;
(2)BD⊥CE.
【考点】全等三角形的判定与性质;等腰直角三角形.
【专题】证明题.
【分析】(1)由条件证明△BAD≌△CAE,就可以得到结论;
(2)根据全等三角形的性质得出∠ABD=∠ACE.根据三角形内角和定理求出∠ACE+∠DFC=90°,求出∠FDC=90°即可.
【解答】证明:(1)∵△ACB和△ADE都是等腰直角三角形,
∴AE=AD,AB=AC,∠BAC=∠DAE=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD,
即∠BAD=∠CAE,
在△BAD和△CAE中,
,∴△BAD≌△CAE(SAS),
∴BD=CE;
(2)如图,
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°,
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
∴∠FDC=90°,
∴BD⊥CE.
【点评】本题考查了全等三角形的判定及性质的运用,垂直的判定及性质的运用,等腰直角三角形的性质的运用,勾股定理的运用,解答时运用全等三角形的性质求解是关键.
初二数学期末试卷及浙教版相关 文章 :
★ 八年级上册数学期末考试试卷及
★ 八年级下册数学试卷及
★ 八年级上册数学考试试卷及参
★ 初二数学期末考试试卷分析
★ 八年级下册期末数学试题附
★ 人教版八年级数学上册期末试卷
★ 八年级上学期数学期末模拟试卷
★ 新人教版八年级上册数学期末试卷
★ 八年级数学上实数期末复习数学题及
★ 历史八年级上册期中测试题带
初二数学
C、当x+1=1或﹣1时,的值是整数,故C错误;多边形内角公式:(n-2)180即180n-360
A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE(3490+360)/180=21.39
即此多边形为22边形
(22-2)180-3490=110
答:此内角为110度
多边形内角和为180(n-2)所以内角和是180的整数倍。(3490+§)/180=20所以这个内角是110度。
多边形内角和是180的整数倍,3600°-3490°=110°
110=2ac …………………………………2分
110
求人教版九年级数学上学期期末试卷附
16.如图,已知等腰梯形ABCD,AD‖BC, AD=5cm,BC=11cm,高DE=4cm,则梯....2.一次函数y=-3x+5的图象经过( )A.、三、四象限 B.第二、三、四象限 C.、二、三象限 D.、二、四象限3.如图 ...新课标八年级英语,新课标八年级英语上......2.一次函数y=-3x+5的图象经过( )A.、三、四象限 B.第二、三、四象限 C.、二、三象限 D.、二、四象限3.如图 ...
新人教版八年级上学期期末数学测试卷及
......姓名________ 学号_________ 班别_________一、选择题(每题3分八年级上学期试卷,八年级语文期末试卷共33分)1、下列运算不正确的是 ( )A、 x2·x3 = ...
人教新课标横龙中学九年级数学上学期期中考试8、下列说法,正确的是试卷(含)-
......1.下表是我国几个城市某年一月份的平均气温人教版九年级上学期,新课标九年级英语其中气温的城市是( )。城市 武汉 广州 哈尔滨 平均气温(单位:℃) -4.6 3.8 13.1 -19.4 A、 ...
东北师大附中05-06年上学期高二期末试卷数学(人教版)(附)-高二年级上学期期中试卷数学
......各题的或解答过程均写在答题纸内的指定处人教版四年级上学期,写在试卷上的无效。答题前,考生务必将自己的“姓名”,“班级”和“学号”写在答题纸上。考试结束,人教版高二英语教案只交答题纸。 ...
解:(1)2;3;-1 (3分)人教新课标八年级数学上学期期中测试卷(含)-
......年级数学上学期期中测试卷一、耐心填一填(每小题4分新课标八年级英语,写在试卷上的无效。答题前,考生务必将自己的“姓名”,“班级”和“学号”写在答题纸上。考试结束,共32分)1.已知,如图1,一轮船在离A港10千米的P地出发向B港匀速前进,新课标八年级英语上30分钟后离A港26千米(未到达B港) ...
好好复习吧!别想这种坏办法!
非常光滑
数学 人教版 八年级上册 期末全效测试卷一
22.(本题满分6分)2009年春初中学生期末学习能力调查
八年级 数 学 2010.1
本试卷由选择题、填空题和解答题三部分组成,共28题,满分100分,
考试时间120分钟.
注意事项:
1.答题前,考生务必将学校名称、姓名、考试号等信息填写在答题卷相应的位置上
2.考生答题必须答在答题卷相应的位置上,答在试卷和草稿纸上一律无效
一、选择题 (本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确填在答题卷相应的位置上)
1.2的相反数是
A.2 B.-2 C. D.
2.下面是一些的国旗图案,其中为轴对称图形的是
3.下列说确的是
A.0的平方根是0 B.1的平方根是1
C.-1的平方根是-1 D. 的平方根是-1
4.有一组数据:10、20、80、40、30、90、50、40、50、40,它们的中位数是
A.30 B.90 C.60 D.40
5.如果点P(m,1-2m)在第四象限,那么m的取值范围是
A. B.
C. D.
6.正方形具有而菱形不一定具有的性质是
A.对角线互相平分 B.对角线互相垂直
7. 已知一次函数 ,若y随x的增大而增大,则m的取值范围是
A. B.
C. D.
8.如图所示,在梯形ABCD中,AD‖BC,中位线EF交BD于点O,若OE∶OF=1∶4,则AD∶BC等于
A.1∶2 B.1∶4 C.1∶8 D.1∶16
9.如图所示,在边长为2的正三角形ABC中,已知点P是三角形内任意一点,则点P到三角形的三边距离之和PD+PE+PF等于
A. B. C. D.无法确定
10.如图所示,在长方形ABCD的对称轴l上找点P,使得△PAB、△PBC均为等腰三角形,则满足条件的点P有
A.1个 B.3个 C.5个 D.无数多个
二、填空题(本大题共8小题,每小题2分,共16分,请将填在答题卷相应的位置上)
11.计算: ▲ .
12.当 时, ▲ .
13.-27的立方根是 ▲ .
14.已知5个数据的和为485,其中一个数据为85,那么另4个数据的平均数是 ▲ .
15.已知点A(a,2a-3)在一次函数y=x+1的图象上,则a= ▲ .
16.已知等腰三角形ABC的周长为8cm,AB=3cm.若BC是该等腰三角形的底边,则BC= ▲ cm.
17.如图所示,点A、B在直线l的同侧,AB=4cm,点C是点B关于直线l的对称点,AC交直线l于点D,AC=5cm,则△ABD的周长为 ▲ cm.
18.如图所示,在△ABC中,已知AB=AC,∠A=36°,BC=2 ,BD是△ABC的角平分线,则AD= ▲ .
三、解答题 (本大题共64分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卷相应的位置上)
19.(本题满分5分)计算: .
20.(本题满分5分)解不等式 ,并把解集在数轴上表示出来.
21.(本题满分5分)如图,方格纸中每个小方格都是边长为1的正方形,将其中的△ABC绕点D按顺时针方向旋转90°,得到对应△A'B'C'.
(1)请你在方格纸中画出△A'B'C';
(2)C C'的长度为 ▲ .
22.(本题满分6分)已知点O(0,0),A(3,0),点B在y轴上,且
△OAB的面积是6,求点B的坐标.
23.(本题满分6分)如图所示,在梯形ABCD中,已知AD‖BC,AB=DC,∠ACB=40°,∠ACD=30°.
(1)∠BAC= ▲ °;
(2)如果BC=5cm,连接BD,求AC、BD的长度.
24.(本题满分6分)如图,△ABC的中线AF与中位线DE相交于点O.试问AF与DE是否互相平分?为什么?
25.(本题满分7分)某公司为了了解公司每天的用电情况,抽查了某月10天全公司的用电数量,数据如下表(单位:度):
度数 90 100 102 110 116 120
天数 1 1 2 3 1 2
(1)求出上表中数据的众数和平均数;
(2)根据获得的数据,估计该公司本月的用电数量(按30天计算);若每度电的定价为0.5元,试估算本月的电费支出约多少元?
26.(本题满分8分)已知:如图,在矩形ABCD中,点E在AD边上,AE>DE,BE=BC,点O是线段CE的中点.
(2)若AB=3,BC=5,求BO的长;
27.(本题满分8分)已知一次函数 的图象经过点 ,且与函数 的图象相交于点 .
(1)求 的值;
(2)若函数 的图象与 轴的交点是B,函数 的图象与 轴的交点是C,求四边形 的面积(其中O为坐标原点).
28.(本题满分8分)如图所示,四边形OABC是矩形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,若△ECD的周长为2,△EBA的周长为6.
(1)矩形OABC的周长为 ▲ ;
(2)若A点坐标为 ,求线段AE所在直线的解析式.
初中学生期末学习能力调查
初 二 数 学 2010.1
题号 一 二 三 总分 结分人 复核人
1—10 11—18 19 20 21 22 23 24 25 26 27 28
得分
一、选择题 (本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的选项填在下面相应的空格里)
题号 1 2 3 4 5 6 7 8 9 10
二、填空题(本大题共8小题,每小题2分,共16分.请将填在下面相应题号的横线上)
11. ; 12. ; 13. ; 14. ; 15. ; 16. ; 17. ; 18. .
三、解答题 (本大题共64分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卷相应的位置上)
19.(本题满分5分)
解:
20.(本题满分5分)
解:
21.(本题满分5分)
解:C C'的长度为 .
解:
23.(本题满分6分)
(2)
24.((2)哪种情况最为普遍?它的百分比是多少?本题满分6分)
解:
25.(本题满分7分)
解:
26.(本题满分8分)
解:
=27.(本题满分8分)
解:
28.(本题满分8分)
解:(1)矩形OABC的周长为 ;
(2)
初中学生学习能力调查
初二数学及评分标准
一、选择题(本大题共10小题,每小题2分,共20分)
1.B 2.B 3.A 4.D 5.D 6.C 7.A 8.B 9.A 10.C
二、填空题(本大题共8小题,每小题2分,共16分)
11.9 12.0 13.-3 14.100 15.4 16.2 17.9 18.2
三、解答题(本大题共10小题,共64分)
19.(本题满分5分)
解:原式 ……(3分)
=-1 ……(5分)
20.(本题满分5分)
解:把不等式化为 ,即 . ……(3分)
准确画出解集在数轴上的表示(图略). ……(5分)
21.(本题满分5分)
解:(1)准确画出一个对应点得1分,二个对应点得2分,
三个对应点得3分(图略). ……(3分)
(2)C C'= (注:此处写 ,不扣分) ……(5分)
解:设点B的坐标为(0,b).
∵点O(0,0),A(3,0),∴ OA=3. ……(2分)
∵点B在y轴上,∴△OAB是直角三角形. ……(4分)
由题意得: ,∴ ,
即点B的坐标为(0,4)或(0,-4). ……(6分)
23.(本题满分6分)
解:(1)∠BAC=70°. ……(2分)
(2)∵∠ABC =∠BAC=70°,∴AC=BC=5cm. ……(4分)
在梯形ABCD中,∵AB=CD,∴BD=AC=5cm. ……(6分)
24.(本题满分6分)
解:AF与DE互相平分. ……(2分)解之得:x=252 ………………………………2分
连接DF、EF.∵AF、DE分别是△ABC的中线与中位线,
∴D、E、F分别是AB、AC、BC的中点,
∴DF‖AE,EF‖AD. ……(4分)
∴四边形ADFE是平行四边形,∴AF与DE互相平分. ……(6分)
25.(本题满分7分)
解(1)这组数据的众数为110; ……(2分)
平均数为
. ……(4分)
(2)估计该公司本月的用电数量为108×30=3240(度); ……(6分)
电费支出约为3240×0.5=1620(元). ……(7分)
26.(本题满分8分)
解(1)∵四边形ABCD是矩形,∴AD‖BC,∴∠BCE=∠DEC.…(1分)
又∵BE=BC,∴∠BCE=∠BEC. ……(2分)
∴∠BEC=∠DEC,∴CE平分∠BED. ……(3分)
(2)在直角三角形BAE中,AB=3,BE=BC=5,∴AE=4. ……(4分)
在直角三角形CDE中,CD=3,DE=1,∴EC= . ……(5分)
在直角三角形BOC中,BC=5,CO= ,∴BO= .(6分)
(注:此处用等面积法求BO亦可,此处写 ,不扣分)
(3)在直线AD上存在点F,使得以B、C、F、E为顶点的四边形是菱形.
延长ED至F,使得EF=BC,此时四边形BCFE是菱形. ……(7分)
∵AE>DE,∴BE>CE,
因此在EA的延长线上不存在点F,使得四边形BCEF为菱形. ……(8分)
27.(本题满分8分)
解(1)由题意知, . ……(2分)
(2)∵直线 过点 ,
∴ ,解得 . ……(4分)
∴函数 的图象与x轴的交点 , ……(5分)
函数 的图象与y轴的交点 , ……(6分)
又 , , ……(7分)
∴ . ……(8分)
(注:第2小题关于四边形ABOC的面积求法较多,酌情给分)
28.(本题满分8分)
解(1)矩形OABC的周长为8. ……(2分)
(2)∵ ,∴ . ……(3分)
∴ . ……(4分)
∴ ,即点E的坐标为 . ……(5分)
设直线AE的解析式为 ,
则 ,解得 . ……(7分)
∴直线AE的解析式为 . ……(8分)
(注:第2小题关于点E坐标的求法较多,酌情给分)
八年级上册数学试题
(1)试说明CE平分∠BED;1、(3ab-2a)÷a
2、(x^3-2x^y)÷(-x^2)
3、-21a^2b^3÷7a^2b
4、(6a^3b-9a^c)÷3a^2
5、(5ax^2+15x)÷5x
6、(a+2b)(a-2b)
7、(3a+b)^2
8、(1/2
a-1/3
b)^2
9、(x+5y)(x-7y)
10、(2a+3b)(2a+3b)
11、(x+5)(x-7)
12、5x^3×8x^2
13、-3x×(2x^2-x+4)
14、11x^12×(-12x^11)
15、(x+5)(x+6)
16、(2x+1)(2x+3)
17、3x^3y×(2x^2y-3xy)
18、2x×(3x^2-xy+y^2)
19、(a^3)^3÷(a^4)^2
20、(x^2y)^5÷(x^2y)^3
22、(-2mn^3)^3
23、(2x-1)(3x+2)
24、(2/3
x+3/4y)^2
25、2001^2-2002×2002
26、(2x+5)^2-(2x-5)^2
27、-12m^3n^3÷4m^2n^3
28、2x^2y^2-4y^3z
29、1-4x^2
30、x^3-25x
31、x^3+4x^2+4x
32、(x+2)(x+6)
33、2a×3a^2
34、(-2mn^2)^3
36、27x^8÷3x^4
37、(-2x^2)×(-y)+3xy×(1-1/3
x)
38、am-an+ap
39、25x^2+20xy+4y^2
40、(-4m^4+20m^3n-m^2n^2)÷(-4m^2)
41、(12p^3q^4+20p21、(y^3)^3÷y^3÷(-y^2)^2^3q^2r-6p^4q^3)÷(-2pq)^2
42、[4y(2x-y)-2x(2x-y)]÷(2x-y)
43、(x^2y^3-1/2
x^3y^2+2x^2y^2)÷1/2
xy^【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,2
44、(4a^3b^3-6a^2b^3c-2ab^5)÷(-2ab^2)
45、(ax+bx)÷x
46、(ma+mb+mc)÷m
47、(9x^4-15x^2+6x)÷3x
48、(28a^3b^2c+a^2b^3-14a^2b^2)÷(-7a^2b)
49、(6xy^2)^2÷3xy
50、24a^3b^2÷3ab^2
铜仁市2009-2010学期八年级期末数学试卷
6、(1)过点P作直线l的的垂线PO,垂足为O;一、填空题:(每空1分,共15分)
1、如把柱体分成圆柱体和棱柱体两类,那么长方体属于哪一类?答:属于_________。
2、下面的卡片A和卡片B中,能折成正方体的有_________________。
3、写出上右图中的所有能用一个大写字母表示的角________________________。
4、如果飞机离地面8000米记为+8000米,现在它又下降了1000米,那么现在飞机的高度可记为__________米。
5、比较大小:_____。
6、太阳离地球约有一亿五千万千米,用科学记数法表示这个距离为_________千米。
7、陈新同学的作业本上出现了一个错误的等式,请你直接在算式中添“括号”或“符号”或“负号”
(不限定个数),使等式成立: -3 + 2 = 5 。
8、你玩过“24点”游戏吗?就是让你将给定的四个数,用加、减、乘、除四则运算(每个数只能使用一次),使运算结果等于24。例如2、3、5、7,算式为3×5+2+7。
现在给你四个数1、2、6、9,请你列算式:_________________________。
9、当n=______时,3x2y5与-2x2y3n-1是同类项。
10、一个均匀的小正方体的六个面上分别标有1、1、2、3、4、5六个数字,现任意掷该正方体一次,则朝上的数字是偶数的可能性是_______。
11、设有足够多的黑白围棋子,按照一定的规律排成一行:
……
请问第2003个棋子是黑的还是白的?答:__________。
12、时钟指向5:30,则时针与分针所成较小的那个角的度数为__________度。
13、教室里一般都装日光灯来照明,已知每根灯管每小时的平均耗电量约为0.04千瓦·时(俗称为度);而1度电(1千瓦·时)价格是0.75元;设教室每天平均开灯10小时,请计算并回答以下问题:
(1)若每所中小学平均有30间教室,每间教室配有12根灯管,那么一所中小学所有教室一天的耗电量是_____________千瓦·时;
(2)深圳约有500所中小学;一年若按210个工作日(即上学时间)计,则每年全市中小学所有教室的照明电费约为_______________________元。
14、“千佳百货”举办“迎新春送大礼”的促销活动,全场商品一律打八折销售。赵老师花了992元买了台“福星牌”平衡式热水器,那么该商品的原售价为_______元。
二、选择题:(每题1分,共10分,将直接填在下表中)
题号
12
34
56
78
0
1、有下面的算式:①(-1)2003=-2003;②0-(-1)=1;③-+=-;④=-1;
⑤2×(-3)2=36;⑥-3÷×2=-3,其中正确算式的个数是
A、1个 B、2个 C、3个 D、4个
2、下列说法,正确的是
A、若-2+x是一个正数,则x一定是正数
B、如果两个数的和为零,那么这两个数一定是一正一负
C、-a表示一个负数
D、两个有理数的和一定大于其中每一个加数
3、陈新同学说他家刚买了一个15寸液晶电脑显示器,同学问有多薄,他说不清。以下四个数据中,请你选择一个比较合理的数据来表示液晶显示器的厚度
A、5毫米 B、5厘米 C、5分米 D、5米
4、下列各式,成立的是
A、a-b+c=a-(b-c) B、3a-a=3 C、8a-4=4a D、-2(a-b)=-2a+b
5、下面说法,错误的是
A、一个平面截一个球,得到的截面一定是圆
B、一个平面截一个正方体,得到的截面可以是五边形
C、棱柱的截面不可能是圆
D、图B是几C.对角线相等 D.对角线平分一组对角何体A的左视图
A B
6、如图,已知∠AOC=∠BOD=90°,∠AOD=150°,则∠BOC的度数为:
A、30° B、45° C、50° D、60°
7、下列,你认为是必然的是
A、深圳大年初一的天气晴空万里
B、陈新说昨晚小区突然停电,因光线不好,吃饭时不小心咬到自己的鼻子
C、元旦节这一天刚好是1月1日
D、一个袋子里装有白球3个、红球7个,每个球除颜色外都相同,任意摸出一个球是白色的
A、长方形的长是a米,宽比长短25米,则它的周长可表示为(2a -25)米
B、6h表示底为6、高为h的三角形的面积
C、10a+b表示一个两位数,它的个位数是a,十位数是b
D、甲、乙两人分别以3千米/小时和5千米/小时的速度,同时从相距40千米的两地相向出发,设他们经过x小时相遇,则可列方程为3x+5x=40
9、在日历上,如果某月的10日是星期五,那么这个月里下面哪个日期是星期四
A、4日 B、15日 C、20日 D、30日
10、陈新的父亲到银行存入20000元,存期一年,年利率为1.98%,到期应交纳所获利息的20%的利息税,那么到期取款并交利息税后,陈新的父亲可取回
A、20158.4元 B、20316.8元 C、20396元 D、20198元
三、解答题:(第2、7、10题各5分,第9题6分,其它题各4分,共45分)
1、化简:7ab+(-8ac)-(-5ab)+10ac-12ab
解:
2、先化简,再求值:4x3-[-x2+2(x3-x2)],其中x=-3。
解:
3、解方程:x-7=10-4(x+0.5)
解:
4、阅读题:课本上有这样一道例题:“解方程:
解:6(x+15)=15-10(x-7) ……………………①
6x+90=15-10x+70 ……………………②
16x=-5 ……………………③
x=” ……………………④
请回答下列问题:
(1)得到①式的依据是______________________;
(2)得到②式的依据是______________________;
(3)得到③式的依据是______________________;
(4)得到④式的依据是______________________。
5、利用小方格,在方格纸上画一组平行线段,再画一组互相垂直的线段,标上字母;并在方格纸的右侧空白处,用字母和符号分别表示出每组线段之间的关系。
(2)连接PA、PB;
(3)比较线段PO、PA、PB的长短,并按小到大的顺序排列。
解:
7、请你用几何图形“”(可以对图形的形状和大小作适当的变化,甚至是夸张的变形)为构件,构思出具有独特的意义的一个图形,并写上一句贴切的解说词或标题。
解:
8、福顺路交通拥堵现象十分。上周末,陈新同学在福顺人行天桥处对3000名过往行人作了问卷调查,问题是:从这里横过福顺路时,你是否自觉走人行天桥。供选择的是:A、是;B、否;C、有时。他将得到的数据通过处理后,画出了扇形统计图,
请你根据这个扇形图回答下列问题:
(1)不走人行天桥横过福顺路的被调查者有多少人?
(3)根据这个调查结果,请简要的写出你的感想或建议。
答:
9、景新中学组织初一学生到“红梅德育基地”军训,基地分配给该校宿舍若干间。 如果每间宿舍住8人,则少12个床位;如果每间宿舍住9人,却又空出2间宿舍。问该校参加这次军训的学生有多少人?
解:
10、如图,按一定的规律用牙签搭图形:
① ② ③
(1)按图示的规律填表:
图形标号 ① ② ③ …… ⑩
牙签根数 ……
(2)搭第n个图形需要________________________根牙签。
一、填空题:(每空1分,共15分)
4、+7000 5、<(或小于) 6、1.5×108
7、|-3|+2=5;或-(3+2)=-5;或-(-3)+2=5
8、(9-1)×(6÷2);或(2×9+6)×1;或(9-1)÷2×6
9、2 10、 11、白 12、15
13、(1)144;(2)11340000 14、1240
二、选择题:(每题1分,共10分,将直接填在下表中)
题号
12
34
56
78
0
CA
BA
DA
CD
DB
为方便计分,以下各题标注的分为步骤分,而非累积得分
三、解答题:(第2、7、10题各5分,第9题6分,其它题各4分,共45分)
1、解:原式=7ab-8ac+5ab+10ac-12ab …………………………………2分
2、解:原式=4x3-(-x2+2x3-x2)
=4x3+x2-2x3+x2
=2x3+x2 …………………………………3分
当x=-3时,原式=2(-3)3+(-3)2=2×(-27)+15=-39 …………………………………A B C D2分
3、解:去括号,得x-7=10-4x-2
移项、合并同类项得5x=15 …………………………………2分
两边同除以5,得x=3 …………………………………2分
4、(各1分)(1)去分母;(2)去括号;(3)移项、合并同类项;(4)两边同除以16
说明:写步骤名称或写出相应的变形原理都给分。
5、画图2分,写关系式2分。
6、(1)1分;(2)1分;(3)2分。
7、画图4分,写解说词或标题1分。
8、(1)480人。 …………………………………………………1分
(2)横过福顺路时自觉走人行天桥;55.3%。 ……………2分
(3)合逻辑、有条理。 ……………………………………1分
9、解:解法(I):设该校参加这次军训的学生有x人 ………………………………1分
据题意列方程为: ………………………………2分
答:该校参加这次军训的学生有252人。 ………………………………1分
解法(II):设基地分配给该校宿舍有x间 ………………………………1分
据题意列方程为:8x+12=9(x-2) ………………………………2分
解之得:x=30 ………………………………2分
8x+12=30× 8+12=252
答:该校参加这次军训的学生有252人。 ………………………………1分
网上搜不到的
曾经我也搜过..
你管找点卷子来做满~
要动手做才有好收获~
看在同是铜仁老乡的份上
选我吧=。=
一、填空:
1、 千克=( )克 40分=( )时
北师大版数学八年级(上册)期末试卷
北师大版八年级数学上册期末试卷
一、 选择题(每小题3分,共18分)
下列各小题均有四个,其中只有一个是正确的,将正确的代号字母填入题后括号内。
1. 的相反数是( )
A35、(-m+n)(m-n). B. C. D.
2. 如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为( )
A.6 B. 8
C.10 D.12
3. 为了让居民有更多休闲和娱乐的地方, 又新建了几处广场,工人师傅在铺设地面时,准备选用同一种正多边形地砖.现有下面几种形状的正多边形地砖,其中不能进行平面镶嵌的是( )
A.正三角形 B.正方形 C.正五边形 D.正六边形
4. 在平面直角坐标系中,点 的位置在( )
A.象限 B.第二象限 C.第三象限 D.第四象限
5. 在一组数据3,4,4,6,8中,下列说确的是()
A.平均数小于中位数 B.平均数等于中位数
C.平均数大于中位数 D.平均数等于众数
6. 估计 的运算结果应在( ).
A.6到7之间 B.7到8之间 C.8到9之间 D.9到10之间
二、填空题(每小题3分,共27分)
7. 要使 在实数范围内有意义, 应满足的条件是 .
8. 若一个多边形的内角和等于 ,则这个多边形是 边形.
9. 随着海拔高度的升高,空气中的含氧量含氧量 与大气压强 成正比例函数关系.当 时, ,请写出 与 的函数关系式 .
10. 如图,点 在数轴上对应的实数分别为 ,
则 间的距离是 .(用含 的式子表示)
11. 边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是 .
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。