太阳能电池板内部构造

结构组成:

太阳能电池的结构简述_太阳能电池的结构简述图太阳能电池的结构简述_太阳能电池的结构简述图


太阳能电池的结构简述_太阳能电池的结构简述图


1) 钢化玻璃 其作用为保护发电主体(如电池片),透光其选用是有要求的,

透光率必须高(一般%以上);

超白钢化处理

2) EVA 用来粘结固定钢化玻璃和发电主体(如电池片),透明EVA材质的优劣直接影响到组件的寿命,暴露在空气中的EVA易老化发黄,从而影响组件的透光率,从而影响组件的发电质量除了EVA本身的质量外,组件厂家的层压工艺影响也是非常大的,如EVA胶连度不达标,EVA与钢化玻璃、背板粘接强度不够,都会引起EVA提早老化,影响组件寿命。

3)电池片主要作用就是发电,发电主体市场上主流的是晶体硅太阳电池片、薄膜太阳能电池片,两者各有优劣。晶体硅太阳能电池片,设备成本相对较低,但消耗及电池片成本很高,但光电转换效率也高,在室外阳光下发电比较适宜薄膜太阳能电池,相对设备成本较高,但消耗和电池成本 很低,但光电转化效率相对晶体硅电池片一半多点,但弱光效应非常好,在普通灯光下也能发电,如计算器上的太阳能电池。

4)EVA作用如上,主要粘结封装发电主体和背板太阳能电池板

5) 背板 作用,密封、绝缘、防水(一般都用TPT、TPE等材质必须耐老化,大部分组件厂家都质保25年,钢化玻璃,铝合金一般都没问题,关键就在与背板和硅胶是否能达到要求。)

6)铝合金保护层压件,起一定的密封、支撑作用

7) 接线盒 保护整个发电系统,起到电流中转站的作用,如果组件短路接线盒自动断开短路电池串,防止烧坏整个系统接线盒中关键的是二极管的选用,根据组件内电池片的类型不同,对应的二极管也不相同

8) 硅胶 密封作用,用来密封组件与铝合金边框、组件与接线盒交界处有些公司使用双面胶条、泡棉来替代硅胶,国内普遍使用硅胶,工艺简单,方便,易作,而且成本很低。

钢化玻璃,EVA,串联的电池片串,EVA,背板,层压后组装铝合金框,后接接线盒。

太阳能电池的制作技术;

国内太阳能电池制造厂商将太阳能电池称为晶片,把晶片(或依设计所需要的电流进行晶片切割后)焊上箔条导线再将许多焊好的晶片用箔条串联成一组,再和EVA、tedlar与低铁质强化玻璃层层叠叠,一同放入层压机(laminate)的机台上做真空封装,制成module(plane/panel)称之为模组或称太阳能板,将若干太阳能板组成方阵(列阵array),接配上过充放保护控制(controller)及深(循环)放电蓄电池(铅钙)以及逆转流器(inverter直流转变为交流)合称为太阳能电力系统,又称太阳能发电站。

太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值的部分。其作用是将太阳能转化为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。

是电池组件还是单个电池

电池组件是由一块块电池焊接而成的

外面是由钢化玻璃,电池是由硅片制成PN结,后经一系列工序终而成,在经过光照后可以让内部有定向移动的电子而终生成电流

太阳能电池板的结构有哪些?作用是什么?

太阳能电池板主要部件有:

钢化玻璃------作用是承载电池片,增加投射率;

EVA-

----------作用是密封,对内电路绝缘

背板------------作用是紫外防护,绝缘

边框------------作用是便于安装

接线盒---------作用是将内电路引出的端口

太阳能电池---核心部分

太阳能电池板得结构:从正面看去顺序依次是钢化玻璃-EVA-太阳能电池-EVA-背板-接线盒-侧边是边框

太阳能板的内部结构?

太阳能发电系统由太阳能电池组、太阳能、蓄电池组、逆变器组成。

各部分的作用为:

1、太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。

2、太阳能的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温较大的地方,合格的还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是的可选项。

3、蓄电池一般为铅酸电池,小系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。

4、逆变器将太阳能发电系统所发出的直流电能转换成交流电能,使用DC-AC逆变器。

太阳能电池组件构成及各部分功能有哪些

【光伏结构组件】光伏结构组件(俗称太阳能电池板)由太阳能电池片(整片的两种规格125125mm、156156mm、124124mm等)或由激光切割机机或钢线切割机切割开的不同规格的太阳能电池组合在一起构成。由于单片太阳能电池片的电流和电压都很小,然后我们把他们先串联获得高电压,再并联获得高电流后,通过一个二极管(防止电流回输)然后输出。并且把他们封装在一个不锈钢、铝或其他非金属边框上,安装好上面的玻璃及背面的背板、充入氮气、密封。整体称为组件,也就是光伏结构组件或说是太阳电池组件。

单体太阳电池不能直接做电源使用。作电源必须将若干单体电池串、并联连接和严密封装成组件。光伏结构组件(也叫太阳能电池板)是太阳能发电系统中的核心部分,也是太阳能发电系统中重要的部分。其作用是将太阳能转化为电能,或送往蓄电池中存储起来,或推动负载工作。随着逆变器的使用,可以直接把光伏结构组件的电流源转化成为40V左右的电压源,就可以驱动电器应用在生活当中。

太阳能的结构有什么?

当光照射到半导体上时,光子将能量提供给电子,电子将跃迁到更高的能态,在这些电子中,作为实际使用的光电器件里可利用的电子有: (1)价带电子; (2)自由电子或空穴(Free Carrier); (3)存在于杂质能级上的电子。 太阳电池可利用的电子主要是价带电子。由价带电子得到光的能量跃迁到导带的过程决定的光的吸收称为本征或固有吸收。 太阳电池能量转换的基础是结的光生伏应。当光照射到pn结上时,产生电子一空穴对,在半导体内部结附近生成的载流子没有被复合而到达空间电荷区,受内建电场的吸引,电子流入n区,空穴流入p区,结果使n区储存了过剩的电子,p区有过剩的空穴。它们在pn结附近形成与势垒方向相反的光生电场。光生电场除了部分抵消势垒电场的作用外,还使p区带正电,N区带负电,在N区和P区之间的薄层就产生电动势,这就是光生伏应。此时,如果将外电路短路,则外电路中就有与入射光能量成正比的光电流流过,这个电流称作短路电流,另一方面,若将PN结两端开路,则由于电子和空穴分别流入N区和P区,使N区的费米能级比P区的费米能级高,在这两个费米能级之间就产生了电位VOC。可以测得这个值,并称为开路电压。由于此时结处于正向偏置,因此,上述短路光电流和二极管的正向电流相等,并由此可以决定VOC的值。 1.2.2太阳电池的能量转换过程 太阳电池是将太阳能直接转换成电能的器件。它的基本构造是由半导体的PN结组成。此外,异质结、肖特基势垒等也可以得到较好的光电转换效率。本节以普通的硅PN结太阳电池为例,详细地观察光能转换成电能的情况。 首先研究使太阳电池工作时,在外部观测到的特性。图2.14表示了无光照时典型的电流电压特性(暗电流)。当太阳光照射到这个太阳电池上时,将有和暗电流方向相反的光电流Iph流过。 图2.14 无光照及光照时电流-电压特性 当给太阳电池连结负载R,并用太阳光照射时,则负载上的电流Im和电压Vm将由图中有光照时的电流一电压特性曲线与V=-IR表示的直线的交点来确定。此时负载上有Pout=RI2m的Gong率消耗,它清楚地表明正在进行着光电能量的转换。通过调整负载的大小,可以在一个佳的工作点上得到输出Gong率。输出Gong率(电能)与输入Gong率(光能)之比称为太阳电池的能量转换效率。 [NextPage] 下面我们把目光转到太阳电池的内部,详细研究能量转换过程。太阳电池由硅pn结构成,在表面及背面形成无整流特性的欧姆接触。并设除负载电阻R外,电路中无其它电阻成分。当具有hν(eV)(hν>Eg,Eg为硅的禁带宽度)能量的光子照射在太阳电池上时,产生电子―空穴对。由于光子的能量比硅的禁带宽度大,因此电子被激发到比导带底还高的能级处。对于p型硅来说,少数载流子浓度np极小(一般小于105/cm),导带的能级几乎都是空的,因此电子又马上落在导带底。这时电子及空穴将总的hν - Eg(ev)的多余能量以声子(晶格振动)的形式传给晶格。落到导带底的电子有的向表面或结扩散,有的在半导体内部或表面复合而消失了。但有一部分到达结的载流子,受结处的内建电场加速而流入n型硅中。在n型硅中,由于电子是多数载流子,流入的电子按介电驰豫时间的顺序传播,同时为满足n型硅内的载流子电中性条件,与流入的电子相同数目的电子从连接n型硅的电极流出。这时,电子失去相当于空间电荷区的电位高度及导带底和费米能级之间电位的能量。设负载电阻上每秒每立方厘米流入N个电子,则加在负载电阻上的电压V=QNr=IR表示。由于电路中无电源,电压V=IR实际加在太阳电池的结上,即结处于正向偏置。一旦结处于正向偏置时,二极管电流Id=I0[exp(qV/nkT)-1]朝着与光激发产生的载流子形成的光电流Iph相反的方向流动,因而流入负载电阻的电流值为 (2.39) 在负载电阻上,一个电子失去一个qV的能量,即等于光子能量hν转换成电能qV。流过负载电阻的电子到达p型硅表面电极处,在P型硅中成为过剩载流子,于是和被扫出来的空穴复合,形成光电流 1.3太阳电池的基本特性 1.3.1短路电流 太阳电池的短路电流等于其光生电流。分析短路电流的方便的方fa是将太阳光谱划分成许多段,每一段只有很窄的波长范围,并找出每一段光谱所对应的电流,电池的总短路电流是全部光谱段贡献的总和: (2.40) 式中 λ0 ――本征吸收波长限 R(λ)――表面反射率 F(λ)――太阳光谱中波长为l~l+dl间隔内的光子数。 F(l)的值很大的程度上依赖于太阳天顶角。作为表示F(l)分布的参数是AM(AirMass)。AM表示入射到地球大气的太阳直射光所通过的路程长度,定义为 (2.41) 式中: b0――标准大气压 b――测定时的大气压 Z――太阳天顶距离 一般情况下,b b0,例如,AM1相当于太阳在天顶位置时的情况,AM2相当于太阳高度角为30°时的情况,AM0则表示在宇宙空间中的分布 在实际的半导体表面的反射率与入射光的波长有关,一般为30~50%。为防止表面的反射,在半导体表面制备折射率介于半导体和空气折射率之间的透明薄膜层。这个薄膜层称为减反射膜(Antireflective coating)。 设半导体、减反射膜、空气的折射率分别为n2、n1、n0,减反射膜厚度为d1,则反射率R为 (2.42) 式中: r1=(n0 - n1)/(n0 + n1) r2=(n1 - n2)/(n1 + n2) θ=2πn1d1/λ λ-波长 显然,减反射膜的厚度d1为1/4波长时,R为小。即 时 (λ=λ') (2.43) 一般在太阳光谱的峰值波长处,使得R变为小,以此来决定d1的值。 以硅电池为例,因为在可见光至光范围内,硅的折射率为n2 = 3.4~4.0,使式(2.43)为零,则n1的值( , n0=1)为1.8 n12.0。设l'=4800埃,则600埃d1667埃,满足这些条件的材料一般可采用一氧化硅,在中心波长处,反射率达到1%左右。由于制备了减反射膜,短路电流可以增加30~40%。此外,采用的减反射膜SiO2(n11.5)、Al2O3(n11.9)、Sb2O3(n11.9)、TiO2、Ta2O5(n12.25)。将具有不同折射率的氧化膜重叠二层,在满足一定的条件下,就可以在更宽的的波长范围内减少折射率。此外也可以将表面加工成棱锥体状的方fa,来防止表面反射

太阳能电池的发电结构是怎样的?

一般来说,太阳能电池板组窜后得到200~1000v的直流电,连接至光伏并网逆变器,逆变器将直流电逆变为交流电,然后并到电网。

通常10kw一下是单相,10kw以上是三相。