生活中为什么存在轴对称图形

轴对称图形定义为平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形。直线叫做注:斜放的图形只要能沿一条直线折叠,直线两侧的图形能够互相重合,就是轴对称图形。在轴对称图形中间画一条线,那条线叫对称轴。对称轴,并且对称轴用点画线¤1. 完全平方公式:两数和(或)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,表示;这时,我们也说这个图形关于这条直线对称。比如圆、正方形、等腰三角形、等边三角形、等腰梯形等。

生活中的轴对称 生活中的轴对称图形数学日记生活中的轴对称 生活中的轴对称图形数学日记


生活中的轴对称 生活中的轴对称图形数学日记


生活作用:

为了美观。比如,对称就显的美观漂亮。保持平衡。比如飞机的两翼。特殊工作的需要。比如五角星,剪纸。

生活中为什么存在轴对称图形

正方形 除长方形的以外还有 对角线所在直线

轴对称图形定义为平面内,一个图形沿一¤1.平方公式:两数和与这两数的积,等于它们的平方,条直线折叠,直线两旁的部分能够完全重合的图形。直线叫做对称轴,并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。比如圆、正方形、等腰三角形、等边三角形、等腰梯形等。

生活作用:

为了美观。比如,对称就显的美观漂亮。保持平衡。比如飞机的两翼。特殊工作的需要。比如五角星,剪纸。

生活中哪些东西既是旋转图形又是轴对称图形

※3.多项式与多项式相乘

根据旋转对称图形和轴对称图形的定义:旋转对称图形:把一个图形绕着一个定点旋转一个角度后一.台球桌面上的角,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.(

0度<旋转角<360度).如果一个图形沿着一条直线对折后两部分完全重合,叫轴对称图形.可以得出圆、正方形等都符合.

七年级下册数学期知识点归纳

3.作用

总的来说

就是

一. 整式

※1. 单项式

②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.

③一个单项式中,所有字母的指数和叫做这个单项式的次数.

※2.多项式

①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数项的次数,叫做这个多项式的次数.

②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中的那一项次数.

※3.整式单项式和多项式统称为整式.

二. 整式的加减

¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.

三. 同底数幂的乘法

※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

②指数是1时,不要误以为没有指数;

④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);

⑤公式还可以逆用: (m、n均为正整数)

四.幂的乘方与积的乘方

※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.

※2. .

如将(-a)3化成-a3

※4.底数有时形式不同,但可以化成相同。

※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。

※7.幂的乘方与积乘方法则均可逆向运用。

五. 同底数幂的除法

※2. 在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 ,

④运算要注意运算顺序.

单项式乘法法则在运用时要注意以下几点:

①积的系数等于各因式系数积,先确定符号,再计算。这时容易出现的错误的是,将系数相乘与指数相加混淆;

②相同字母相乘,运用同底数的乘法法则;

③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

⑤单项式乘以单项式,结果仍是一个单项式。

※2.单项式与多项式相乘

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:

①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

③在混合运算时,要注意运算顺序。

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:

①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

②多项式相乘的结果应注意合并同类项;

③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到

七.平方公式

¤其结构特征是:

①公式左边是两个二项式相乘,两个二项式中项相同,第二项互为相反数;

②公式右边是两项的平方,即相同项的平方与相反项的平方之。

八.完全平方公式

¤口决:首平方,尾平方,2倍乘积在;

¤2.结构特征:

①公式左边是二项式的完全平方;

②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误。

九.整式的除法

¤1.单项式除法单项式

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

¤2.多项式除以单项式

多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

第二章 平行线与相交线

※1.互为余角和互为补角的有关概念与性质

如果两个角的和为90°(或直角),那么这两个角互为余角;

如果两个角的和为180°(或平角),那么这两个角互为补角;

注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。

它们的主要性质:同角或等角的余角相等;

同角或等角的补角相等。

二.探索直线平行的条件

※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:

①同位角相等,两直线平行;

②内错角相等,两直线平行;

③同旁内角互补,两直线平行。

三.平行线的特征

※平行线的特征即平行线的性质定理,共有三条:

①两直线平行,同位角相等;

③两直线平行,同旁内角互补。

四.用尺规作线段和角

※1.关于(二)、画法:尺规作图

尺规作图是指只用圆规和没有刻度的直尺来作图。

※2.关于尺规的功能

直尺的功能是:在两点间连接一条线段;将线段向两方向延长。

圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。

第三章生活中的数据

※1.科学记数法:对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法。

¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数到哪一位;对于一个近似数,从左边个不是0的数字起,到到的数位止,所有的数字都叫做这个数的有效数字。

¤3.统计工作包括:

①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。

第四章 概率

¤1.随机发生与不发生的可能性不总是各占一半,都为50%。

※2.现实生活中存在着大量的不确定,而概率正是研究不确定的一门学科。

※3.了解必然和不可能发生的概率。

必然发生的概率为1,即P(必然)=1;不可能发生的概率为0,即P(不可能)=0;如果A为不确定,那么0

※4.了解几何概率这类问题的计算方法

发生概率=

第五章 三角形

一.认识三角形

1.关于三角形的概念及其按角的分类

由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

这里要注意两点:

①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;

②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。

三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。

2.关于三角形三条边的关系

根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。

三角形三边关系的另一个性质:三角形任意两边之小于第三边。

对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。

设三角形三边的长分别为a、b、c则:

①一般地,对于三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三条线段才能构成三角形;

②特殊地,如果已知线段a,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|<a,那么这三条线段就能构成三角形。

3.关于三角形的内角和

三角形三个内角的和为180°

①直角三角形的两个锐角互余;

②一个三角形中至多有一个直角或一个钝角;

③一个三角中至少有两个内角是锐角。

4.关于三角形的中线、高和中线

①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;

②任意一个三角形都有三条角平分线,三条中线和三条高;

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

二.图形的全等

¤能够完全重合的图形称为全等形。全等图形的形状和大小都相同。只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。

四.全等三角形

¤1.关于全等三角形的概念

能够完全重合的两个三角形叫做全等三角形。互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角

所谓“完全重合”,就是各条边对应相等,各个角也对应相等。因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。

※2.全等三角形的对应边相等,对应角相等。

¤3.全等三角形的性质经常用来证明两条线段相等和两个角相等。

五.探三角形全等的条件

※1.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”

※2.有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”

※3.两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”

※4.两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”

六.作三角形

1.已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA”)来作图的。

2.已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS”)来作图的。

3.已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS”)来作图的。

八.探索直三角形全等的条件

※1.斜边和一条直角边对应相等的两个直角三角形全等。简称为“斜边、直角边”或“HL”。这只对直角三角形成立。

※2.直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用“SAS”、“ASA”、“AAS”、“SSS”来判定。

直角三角形的其他判定方法可以归纳如下:

①两条直角边对应相等的两个直角三角形全等;

②有一个锐角和一条边对应相等的两个直角三角形全等。

※1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

※2.角平分线上的点到角两边距离相等。

※3.线段垂直平分线上的任意一点到线段两个端点的距离相等。

※4.角、线段和等腰三角形是轴对称图形。

※5.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

※6.轴对称图形上对应点所连的线段被对称轴垂直平分。

※7.轴对称图形上对应线段相等、对应角相等。

(注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)

举出生活中的对称现象有哪些?

③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

生活中的对称现象:书桌、水杯、火车、楼房、眼睛、耳朵、脸谱、蝴蝶、双喜等。

人们把这些物体做成对称的形状,不仅是为了美观,还有一定的科学道理:水杯的对称保证了它的平稳、美观;火车的对称使它在行驶的过程中保持平衡。

章 整式的运算举例:

1、:这副左右两边完全重合,属于对称现象。

2、杯子:这个杯子左右两边完全重合,属于对称现象。

轴对称图形

对称图形有很多分类,例如轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形。垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。线段垂直平分线上的点到线段两端的距离相等。

以上内容参考

生活中你都见过哪些物体的形状是轴对称的图形?

④单项式乘法法则对于三个以上的单项式相乘同样适用;

生活中轴对称的图形是很多的,比如说所有圆形的东西,轮胎,汽车的轮毂,游乐场的转盘,还有发行的东西,比如说电视机,洗衣机,冰箱。还有一些是三角形的东西,比如说在路边的指示牌,三角形指示牌,等等,这些轴对称图形实际上是很多的

在轴对称图形中,对称轴两侧的对应点被对称轴垂直平分。成轴对称的两个图形是全等的。如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

美丽的轴对称图形?

※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形。在生活中,美丽的轴对称图形比比皆是:

1、美丽的、天坛等是轴对称图形。

2、飞机的两翼也是轴对称图形。

3、特殊几何图形。比如五角星、树叶、剪纸等。

1、轴对称图形是指一条轴线的两边完全对称的图形,包括颜色与形状都完全对称。

2、如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形,比如说圆、正方形等是轴对称图形。

3、性质:

1.对称轴是一条直线。

2.垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。线段垂直平分线上的点到线段两端的距离相等。

3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

4.在轴对称图形中,对称轴把图形分成完全相等的两份。

5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线

6.图形对称。

4、绘制方法:

方法

1.找出所给图形的关键点。

2.找出图形关键点到对称轴的距离。

3.找关键点的对称点。等腰三角形 底边中线所在直线 等边三角形 任一边中线所在直线

4.按照所给图形的顺序连接各点。

5、什么是轴对称图形画法

2.连接对称点。

如图:

轴对称图形

生活中对称的物体有哪些?

※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

生活中对称的物体有:剪刀、书本、、黑板、黑板擦、圆形电风扇、方形瓦楞纸盒、书柜、电脑、笔记本、手机、碗、肥皂、双扇门、酒杯、、电视机等。

③任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。

对称指的是图形或物体相对 的两边各部分,在大小、形状、距离和排列等方面一一相当。如人的面部是对称的,左右两边格 局也是对称的。

对称物体的特点:

1、它有至少一条对称轴。对称轴是一条直线。

2、在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

3、在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

4、如果两个图形关于某条直线对称,那么这条直线就是对称轴且对称轴垂直平分对称点所连线段。

5、图形对称。

常见的轴对称图形都有哪些啊?

常见的轴对称图形有——(5个)对称轴分别是——

我们常见的轴对称图形有圆、长方形、正方形、等腰三角形、等边三角形、等腰梯形等。

1、在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。

2、长方形的性质:两条对角线相等;两条对角线互相平分;两组对边分别平行;两组对边分别相等;四个角都是直角;有2条对称轴(正方形有4条);具有不稳定性(易变形);长方形对角线长的平方为两边长平方的和;顺次连接矩形各边中点得到的四边形是菱形。

3、正方形的两组对边分别平行,四条边都相等;四个角都是90°;对角线互相垂直、平分且相等,每条对角线都平分一组对角。既是中心对称图形,又是轴对称图形(有四条对称轴)。

4、等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。对称轴是底边上的高。

5、等边三角形(又称正三边形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。对称轴是底边上的高。

生活中哪些现象是轴对称的?哪些现象是镜面对称的?

很多,关于平面直角坐标系的X,Y对称意义只要你注意观察.

轴对称的如:窗户,对联,打开的书,还有显示器镜面对称的如:倒影、照镜子呀,电扇空调呀,等等.

水中的倒影是以镜面呈对称.因为水中的倒影实际上就是平面镜成像,规律与平面镜成像一样.