什么是无理数及其定义是什么

有理数:有理数分为正有理数,负有理数,0。有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,只要是无限循环小数的都叫有理数。如:3.12121212121212……

无理数为什么叫无理数_无理数为什么叫无理数?无理数为什么叫无理数_无理数为什么叫无理数?


无理数为什么叫无理数_无理数为什么叫无理数?


无理数:无限不循环小数。无理数应满足三个条件:①是小数;②是无限小数;③不循环.圆周率π=3.141592653……

复数:形如a+bi的数。式中a,b为实数,i是一个满足i2=-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张。

实数:有理数和无理数统称为实数

整数:整数包括正整数,负整数和0.

如正整数:1、2、3......

负整数:-1、-2、-3......

自然数:自然数,就是人们数数时产生的数(如“有3个苹果”),所以用来表示物体个数的数叫做自然数。一个物体也没有,当然可以用“0”来表示,所以“0”也是自然数。

小数点之后的数字有无限多个,并且不会循环

无理数是用有理数来定义的

不是有理数的实数都叫无理数

有理数的定义是:能写成两个整数之比的数

.人们初只认识自然数

后来学会分割就认识了分数

有了分数各种长度都可以很准确地丈量了

似乎计数系统已经完备了

.后来发现正方形的对角线无法表示成分数

圆周率也不是分数

于是就把这些另类的数叫无理数

实际上,后来发现无理数比有理数还要多呢

.分数很好理解,用两个整数就可以确定

无理数不可思议,永远无法写出来

只能增加特殊符号来辅助描述:π,√2

无理数是用有理数来定义的

不是有理数的实数都叫无理数

有理数的定义是:能写成两个整数之比的数

.人们初只认识自然数

后来学会分割就认识了分数

有了分数各种长度都可以很准确地丈量了

似乎计数系统已经完备了

.后来发现正方形的对角线无法表示成分数

圆周率也不是分数

于是就把这些另类的数叫无理数

实际上,后来发现无理数比有理数还要多呢

.分数很好理解,用两个整数就可以确定

无理数不可思议,永远无法写出来小数点之后的数字有无限多个,并且不会循环

无理数是什么意思

无理数,也称为无限不循环小数,接下来给大家分享有关无理数的知识点,供参考。

无理数是什么意思

在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

无理数的表示方法:实数集的表示方法为Q,无理数集相当于实数集中有理数集的补集,所以无理数符号为CrQ。

四种常见的无理数

一是无限不循环小数,例如:0.01001000100001……等;

二是根式,例如:√2,√3,(√5-1)/2等;

三是函数式,例如:lg2,sin1度等;

四是专用符号,如π、e、y。

无理数在位置数字系统中表示(例如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包含数字的子序列。例如,数字π的十进制表示从3.141592653589793开始,但没有有限数字的数字可以地表示π,也不重复。

什么叫无理数? 无理数的具体概念是什么呢?能不能举个例子呢?

在求一个数的方根的过程中,我们发现许多数的方根都不是准确值,而是近似值.

另外,圆周率π=3.141592653……,

又如:0.1010010001…(两个1之间依次多一个零).

上述这些数都不是有限小数或无限循环小数,即都不是有理数,它们都是无限不循环小数.我们将,无限不循环小数,叫做无理数.

注意:(1)无理数应满足三个条件:①是小数;②是无限小数;③不循环.

(2)无理数不都是带根号的数(例如π就是无理数),反之,带根号的数也不一定都是无理数.

无理数是什么意思?

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式,无理数早由毕达哥拉斯学派希伯索斯发现。

而有理数由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比,如21/7等。

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数早由毕达哥拉斯学派希伯索斯发现。

什么是无理数?无理数的来历

无理数是什么,想要了解无理数的小伙伴快来看看吧!,下面由我为你精心准备了“什么是无理数?无理数的来历”,持续关注本站将可以持续获取更多的考试资讯!

什么是无理数?无理数的来历

无理数也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

无理数指的是什么

无理数是指除有理数以外的实数,当中的“理”字来自于拉丁语的rationalis,意思是“理解”,实际是拉丁文对于logos“说明”的翻译,是指无法用两个整数的比来说明一个无理数。

无理数的定义: 在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。

无理数是在实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如π、√2等。

无理数的来历

公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的希伯修斯(Hippausus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1。则对角线的长不是一个有理数),这一不可公度性与毕氏学派“万物皆为数”(只有理数)的哲理大相径庭。这一发现使该学派人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。希伯修斯因此被囚禁,受到百般折磨,竟遭到沉舟身亡的惩处。

毕氏的发现,次向人们揭示了有理数的缺陷,证明它不能同连续的无限直线同等看待,有理数没有布满数轴上的点,在数轴上存在着不能用有理数表示的“空隙”。而这种“空隙”经后人证明简直多得“不可胜数”。于是,古希腊人把有理数视为连续衔接的那种“算术连续统”的设想的破灭了。不可公度的发现连同的芝诺悖论一同被称为数学史上的次危机对以后两千多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学与逻辑学的发展,并且孕育了微积分的思想萌芽。

不可通约的本质是什么?长期以来众说纷纭,得不到正确的解释,两个不可通约的比值也一直被认为是不可理喻的数。15世纪意大利画家达·芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。

然而,真理毕竟是淹没不了的。毕氏学派抹杀真理才是“无理”。人们为了纪念希伯修斯这位为真理而献身的可敬的学者,就把不可通约的量取名为“无理数”——这便是无理数的由来。

无理数和有理数有哪些区别

1.性质不同

有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

2.范围不同

有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数。

3.结构不同

有理数为整数(正整数、0、负整数)和分数的统称。无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。

什么是无理数 无理数是什么

无理数是什么?很多同学在接触到无理数的时候会有一点不知所措,这种没有规律的数字有的时候确实让人觉得头疼。

起初,人们认为无理数不是数。人们想:“搞不清楚是什么的数,我怎么知道你说的是几?没道理吗!”其实它只是一种特殊的数而已。

当然了,后来人们还是接纳了它,也把它作为一种特殊的数来看待,但是没有叫它”特殊的数”,而是叫它“无理数”。

无理数是指实数范围内不能表示成两个整数之比的数。简单来说,无理数是无限不循环小数。如圆周率、√2(根号2)等。