redis数据存储在哪里 redis数据是存在哪里的
面试中问到Redis持久化的原理,本篇在做详细解答
我们知道redis是一个 高效的分布式内存数据库 ,由于是作内存所以性能非常之快,通常用它来做分布式缓存,用来提高微服务的高性能,但是因为是内存作,所以当出现故障,断电等情况就会造成 内存数据丢失 ,不可恢复,因此redis 引入了持久化机制来将内存数据写入磁盘,从而保障了Redis的数据不被丢失。
redis数据存储在哪里 redis数据是存在哪里的
redis数据存储在哪里 redis数据是存在哪里的
Redis有两种持久化的方式,一种是RDB,另外种是AOF。
RDB是将Redis内存中数据的快照存储在磁盘内,是Redis的默认持久化方案。
可在redis.conf中配置,会以一段时间内达到指定修改的次数为规则来触发快照作,快照文件名为dump.rdb。每当Redis服务重启的时候都会从该文件中把数据加载到内存中。
在60秒内有10000redis常用数据类型次作即触发RDB持久化。
没有满足种条件时,在900秒内有1次作即触发RDB持久化。
没有满足第二种条件时,在300秒内有10次作即触发RDB持久化。
RDB持久化除了可以根据配置中的策略来触发外,还可以使用se和bgse命令手动来触发。这两个命令的区别在于se会阻塞进程。在执行se命令的过程中,不能处理任何请求,但是bgse(background se,后台保存)命令会通过一个子进程在后台处理数据RDB持久化。本质上se和bgse调用的都是rdbSe函数,所以Redis不允许se和bgse命令同时执行,当然这也是为了避免RDB文件数据出现不一致性的问题。
每次都是一个大文件,备份写入IO作笔记大,很容易耗时,影响进程资源使用。
如果最近一次进程崩溃,那么最近一次数据备份后的数据就被丢失。
文件直接就可以当冷备使用
AOF(Append Only File)以日志的方式记录每次的写命令,可以很好地解决了数据持久化的实时性。系统重启时可以重新执行AOF文件中的命令来恢复数据。AOF会先把命令追加在AOF缓冲区,然后根据对应策略写入硬盘。
AOF的实现流程有三个步骤
步骤一
把命令追加到AOFif(String.IsNullOrWhiteSpace(sn)){缓冲区,
步骤二
将缓冲区的内容写入程序缓冲区
步骤三
将程序缓冲区的内容写入文件
当AOF持久化功能处于开启状态时,每执行完一个命令就会将命令以协议格式追加写入redis结构体的aof_buf缓冲区。而在服务重启的时候会把AOF文件加载到缓冲区中。
AOF有 三种触发机制
·always:每次发生数据变更都会被立即记录到磁盘,性能较,但数据完整性比较好。
·rysec:每秒钟将aof_buf缓冲区的内容写入AOF文件,如果宕机,就会有1秒内的数据丢失。
·no:将数据同步作交给作系统来处理,性能,但是数据可靠性最。在配置文件中设置appendonly=yes后,若没有指定apendfsync,默认会使用rysec选项。
写入指令随着时间的推移,记录了很多重复的指令,导致数据量非常大。
RDB小,AOF较大
RDB慢,AOF快
RDB快,AOF慢
数据多的时候为什么要使用redis而不用mysql?
通常来说,当数据多、并发量大的时候,架构中可以引入Redis,帮助提升架构的整体性能,减少Mysql(或其他数据库)的压力,但不是使用Redis,就不用MySQL。
因为Redis的性能十分优越,可以支持每秒十几万此的读/写作,并且它还支持持久化、集群部署、分布式、主从同步等,Redis在高并发的场景下数据的安全和一致性,所以它经常用于两个场景:
判断数据是否适合缓存到Redis中,可以从几个方面考虑: 会经常查询么?命中率如何?写作多么?数据大小?
我们经常采用这样的方式将数据刷到Redis中:查询的请求过来,现在Redis中查询,如果查询不到,就查询数据库拿到数据,再放到缓存中,这样第二次相同的查询请求过来,就可以直接在Redis中拿到数据;不过要注意【缓存穿透】的问题。
缓存的刷新会比较复杂,通常是修改完数据库之后,还需要对Redis中的数据进行作;代码很简单,但是需要保证这两步为同一事务,或最终的事务一致性。
高速读写
常见的就是计数器,比如一篇文章的阅读量,不可能每一次阅读就在数据库里面update一次。
高并发的场景很适合使用Redis,比如双11秒杀,库存一共就一千件,到了秒杀的时间,通常会在极为短暂的时间内,有数万级的请求达到,如果使用数据库的话,很可能在这一瞬间造成数据库的崩溃,所以通常会使用Redis(秒杀的场景会比较复杂,Redis只是其中之一,例如如果请求超过某个数量的时候,多余的请求就会被限流)。
这种高并发的场景,是当请求达到的时候,直接在Redis上读写,请求不会访问到数据库;程序会在合适的时间,比如一千件库存都被秒杀,再将数据批量写到数据库中。
所以通常来说,在必要的时候引入Redis,可以减少MySQL(或其他)数据库的压力,两者不是替代的关系 。
我将持续分享Ja开发、架构设计、程序员职业发展等方面的见解,希望能得到你的关注。
通常来说,没有说用Redis就不用MySQL的这种情况。
因为Redis是一种非关系型数据库(NoSQL),而MySQL是一种关系型数据库。
和Redis同类的数据库还有MongoDB和Memchache(其实并没有持久化数据)
那关系型数据库现在常用的一般有MySQL,SQL ,Oracle。
我们先来了解一下关系型数据库和非关系型数据库的区别吧。
1.存储方式
关系型数据库是表格式的,因此存储在表的行和列中。他们之间很容易关联协作存储,提取数据很方便。而Nosql数据库则与其相反,他是大块的组合在一起。通常存储在数据集中,就像文档、键值对或者图结构。
2.存储结构
关系型数据库对应的是结构化数据,数据表都预先定义了结构(列的定义),结构描述了数据的形式和内容。这一点对数据建模至关重要,虽然预定义结构带来了可靠性和稳定性,但是修改这些数据比较困难。而Nosql数据库基于动态结构,使用与非结构化数据。因为Nosql数据库是动态结构,可以很容易适应数据类型和结构的变化。
3.存储规范
关系型数据库的数据存储为了更高的规范性,把数据分割为最小的关系表以避免重复,获得精简的空间利用。虽然管理起来很清晰,但是单个作设计到多张表的时候,数据管理就显得有点麻烦。而Nosql数据存储在平面数据集中,数据经常可能会重复。单个数据库很少被分隔开,而是存储成了一个整体,这样整块数据更加便于读写
4.存储扩展
这可能是两者之间的区别,关系型数据库是纵向扩展,也就是说想要提高处理能力,要使用速度更快的计算机。因为数据存储在关系表中,作的性能瓶颈可能涉及到多个表,需要通过提升计算机性能来克服。虽然有很大的扩展空间,但是最终会达到纵向扩展的上限。而Nosql数据库是横向扩展的,它的存储天然就是分布式的,可以通过给资源池添加更多的普通数据库来分担负载。
}}5.查询方式
关系型数据库通过结构化查询语言来作数据库(就是我们通常说的SQL)。SQL支持数据库CURD作的功能非常强大,是业界的标准用法。而Nosql查询以块为单元作数据,使用的是非结构化查询语言(UnQl),它是没有标准的。关系型数据库表中主键的概念对应Nosql中存储文档的ID。关系型数据库使用预定义优化方式(比如索引)来加快查询作,而Nosql更简单更的数据访问模式。
6.事务
关系型数据库遵循ACID规则(原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)),而Nosql数据库遵循BASE原则(基本可用(Basically Availble)、软/柔性事务(Soft-state )、最终一致性(Eventual Consistency))。由于关系型数据库的数据强一致性,所以对事务的支持很好。关系型数据库支持对事务原子性细粒度控制,并且易于回滚事务。而Nosql数据库是在CAP(一致性、可用性、分区容忍度)中任选两项,因为基于的分布式系统中,很难全部满足,所以对事务的支持不是很好,虽然也可以使用事务,但是并不是Nosql的闪光点。
关系型数据库为了维护数据的一致性付出了巨大的代价,读写性能比较。在面对高并发读写性能非常,面对海量数据的时候效率非常低。而Nosql存储的格式都是key-value类型的,并且存储在内存中,非常容易存储,而且对于数据的 一致性是 弱要求。Nosql无需sql的解析,提高了读写性能。
8.授权方式
大多数的关系型数据库都是付费的并且价格昂贵,成本较大(MySQL是开源的,所以应用的场景最多),而Nosql数据库通常都是开源的。
所以,在实际的应用环境中,我们一般会使用MySQL存储我们的业务过程中的数据,因为这些数据之间的关系比较复杂,我们常常会需要在查询一个表的数据时候,将其他关系表的数据查询出来,例如,查询某个用户的订单,那至少是需要用户表和订单表的数据。
而在这样的使用场景中,我们使用Redis来存储的话,也就是KeyValue形式存储的话,其实并不能满足我们的需要。
即使Redis的读取效率再高,我们也没法用。
但,对于某些没有关联少,且需要高频率读写,我们使用Redis就能够很好的提高整个体统的并发能力。
例如商品的库存信息,我们虽然在MySQL中会有这样的字段,但是我们并不想MySQL的数据库被高频的读写,因为使用这样会导致我的商品表或者库存表IO非常高,从而影响整个体统的效率。
所以,对于这样的数据,且有没有什么复杂逻辑关系(就只是隶属于SKU)的数据,我们就可以放在Redis里面,下单直接在Redis中减掉库存,这样,我们的订单的并发能力就能够提高了。
个人觉得应该站出来更正一下,相反的数据量大,更不应该用redis。
为什么?
因为redis是内存型数据库啊,是放在内存里的。
设想一下,如你的电脑100G的资料,都用redis来存储,那么你需要100G以上的内存!
使用场景
Redis最明显的用例之一是将其用作缓存。只是保存热数据,或者具有过期的cache。
例如facebook,使用Memcached来作为其会话缓存。
总之,没有见过哪个大公司数据量大了,换掉mysql用redis的。
题主你错了,不是用redis代替MySQL,而是引入redis来优化。
BAT里越来越多的项目组已经采用了redis+MySQL的架构来开发平台工具。
如题主所说,当数据多的时候,MySQL的查询效率会大打折扣。我们通常默认如果查询的字段包含索引的话,返回是毫秒级别的。但是在实际工作中,我曾经遇到过一张包含10个字段的表,1800万+条数据,当某种场景下,我们不得不根据一个未加索引的字段进行查询的时候,单条sql语句的执行时长有时能够达到2min以上,就更别提如果用like这种模糊查询的话,其效率将会多么低下。
然而,我在上面也说了,是redis+MySQL结合的方式,而不是替代。原因就是redis虽然读写很快,但是不适合做数据持久层,主要原因是使用redis做数据落盘是要以效率作为代价的,即每隔制定的时间,redis就要去进行数据备份/落盘,这对于单线程的它来说,势必会因“分心”而影响效率,结果得不偿失。
楼主你好,首先纠正下,数据多并不是一定就用Redis,Redis归属于NoSQL数据库中,其特点拥有高性能读写数据速度,主要解决业务效率瓶颈。下面就详细说下Redis的相比MySQL优点。( 关于Redis详细了解参见我近期文章: )
读写异常快
丰富的数据类型
原子性
Redis的所有作都是原子作,这确保如果两个客户端并发访问,Redis能接收更新的值。
丰富实用工具 支持异机主从
Redis支持主从的配置,它可以实现主的完全拷贝。
以上为开发者青睐Redis的主要几个可取之处。但是,请注意实际生产环境中企业都是结合Redis和MySQL的特定进行不同应用场景的取舍。 如缓存——热数据、计数器、消息队列(与ActiveMQ,RocketMQ等工具类似)、位作(大数据处理)、分布式锁与单线程机制、列表(如列表页面的列表)以及排行榜等等 可以看见Redis大显身手的场景。可是对于严谨的数据准确度和复杂的关系型应用MySQL等关系型数据库依然不可替。
web应用中一般采用MySQL+Redis的方式,web应用每次先访问Redis,如果没有找到数据,才去访问MySQL。
本质区别
首先要知道mysql存储在磁盘里,redis存储在内存里,redis既可以用来做持久存储,也可以做缓存,而目前大多数公司的存储都是mysql + redis,mysql作为主存储,redis作为辅助存储被用作缓存,加快访问读取的速度,提高性能。
使用场景区别
1、mysql支持sql查询,可以实现一些关联的查询以及统计;
2、redis对内存要求比较高,在有限的条件下不能把所有数据} catch (ClassNotFoundException e) {都放在redis;
3、mysql偏向于存数据,redis偏向于快速取数据,但redis查询复杂的表关系时不如mysql,所以可以把热门的数据放redis,mysql存基本数据。
mysql的运行机制
mysql作为持久化存储的关系型数据库,相对薄弱的地方在于每次请求访问数据库时,都存在着I/O作,如果反复频繁的访问数据库。:会在反复链接数据库上花费大量时间,从而导致运行效率过慢;第二:反复地访问数据库也会导致数据库的负载过高,那么此时缓存的概念就衍生了出来。
Redis持久化
由于Redis的数据都存放在内存中,如果没有配置持久化,redis重启后数据就全丢失了,于是需要开启redis的持久化功能,将数据保存到磁盘上,当redis重启后,可以从磁盘中恢复数据。redis提供两种方式进行持久化,一种是RDB持久化(原理是将Reids在内存中的数据库记录定时dump到磁盘上的RDB持久化),另外一种是AOF(append only file)持久化(原理是将Reids的作日志以追加的方式写入文件)。
redis是放在内存的~!
数据量多少不是选择redis和mysql的准则,因为无论是mysql和redis都可以集群扩展,约束它们的只是硬件(即你有没有那么多钱搭建上千个组成的集群),我个人觉得数据读取的快慢可能是选择的标准之一,另外工作中往往是两者同是使用,因为mysql存储在硬盘,做持久化存储,而redis存储在内存中做缓存提升效率。
关系型数据库是必不可少的,因为只有关系型数据库才能提供给你各种各样的查询方式。如果有一系列的数据会频繁的查询,那么就用redis进行非持久化的存储,以供查询使用,是解决并发性能问题的其中一个手段
redis 存储什么数据
redis开创了一种新的数据存储思路,使用redis,我们不用在面对功能单调的数据库时,把精力放在如何把大象放进冰箱这样的问题上,而是利用redis灵活多变的数据结构和数据作,为不同的大象构建不同的冰箱。
实现方式:redRedis和MySQL的应用场景是不同的。is最为常用的数据类型主要有以下五种:string、hash、list、set、sorted set
linux redis 一般会安装在哪儿
redis用于存储使用较为频繁的数据到缓存中,读取速度快redis作为NoSQL数据库的一种应用,响应速度和命中率上还是比较高效的。项目中需要用集中式可横向扩展的缓存框架,做了一点调研,即便redis、memc}}ached存在效率上的异(具体比较参考
Redis 是一种 NoSQL 数据库,具体地说,是( )存储数据库。
curSn = snQueue.Dequeue(); // 出队【】:A
因此这里选择了一种开发成本更加低廉的方式,借用已经比较成熟的MySQL UDF,将MySQL数据首先放入Gearman中,然后通过一个自己编写的PHP Gearman Worker,将数据同步到Redis。比分析binlog的方式增加了不少流程,但是实现成本更低,更容易作。本题考查数据库新技术相关问题。NoSQL是指非关系型数据库,是对不同于传统关系型数据库DBMS统称。有几种典型NoSQL数据库。文档存储数据库是以文档为存储信息基本单位,如BaseX,CouchDB,MongoDB等。键值存储数据库支持简单键值存储和提取,具有极高并发读写性能,如Dynamo,Memcached,Redis等。图形存储数据库利用计算机将点、线、面等图形基本元素按照一定数据结构进行存储,如FlockDB、Neo4j等。多值数据库系统是一种分布式数据库系统,提供了一个通用数据集成与访问平台,屏蔽了各种数据库系统不同访问方法和用户界面,给用户呈现出一个访问多种数据库公共接口。
查询数据放入了redis中缓存,怎么查看缓存的数据
{// 提前分配好订单Sn号 入队但是往往又有数据可靠性的需求,采用MySQL作为数据存储,不会因为内存问题而引起数据丢失,同时也可以利用关系数据库的特性实现很多功能。
所以就会很自然的想到是否可以采用MySQL作为数据存储引擎,Redis则作为Cache。而这种需求目前还没有看到有特别成熟File file = getFile("test");的解决方案或工具,因此采用Gearman+PHP+MySQL UDF的组合异步实现MySQL到Redis的数据。
MySQL到Redis数据方案
无论MySQL还是Redis,自身都带有数据同步的机制,比较常用的MySQL的Master/Sle模式,就是由Sle端分析Master的binlog来实现的,这样的数据其实还是一个异步过程,只不过当都在同一内网时,异步的延迟几乎可以忽略。
那么理论上也可以用同样方式,分析MySQL的binlog文件并将数据插入Redis。但是这需要对binlog文件以及MySQL有非常深入的理解,同时由于binlog存在Statement/Row/Mixedll多种形式,分析binlog实现同步的工作量是非常大的。
Redis数据库在哪些场景可以应用的到
e.printStackTrace();redis开创了一种新的数据存储思路,使用redis,我们不用在面对功能单调的数据库时,把精力放在如何把大象放进冰箱这样的问题上,而是利用redis灵活多变的数据结构和数据作,为不同的大象构建不同的冰箱。
redis最为常用的数据类型主要有以下五种:
strpublic Object byte2Object(byte[] bytes) {ing
list
set
sorted set
在具体描述这几种数据类型之前,我们先通过一张图了解下redis内部内存管理中是如何描述这些不同数据类型的:
首先redis内部使用一个redisobject对象来表示所有的key和value,redisobject最主要的信息如上图所示:type代表一
个value对象具体是何种数据类型,encoding是不同数据类型在redis内部的存储方式,比如:type=string代表value存储的是
一个普通字符串,那么对应的encoding可以是raw或者是int,如果是int则代表实际redis内部是按数值型类存储和表示这个字符串的,当然
前提是这个字符串本身可以用数值表示,比如:"123"
"456"这样的字符串。
这里需要特殊说明一下vm字段,只有打开了redis的虚拟内存功能,此字段才会真正的分配内存,该功能默认是关闭状态的,该功能会在后面具体描述。通过
上图我们可以发现redis使用redisobject来表示所有的key/value数据是比较浪费内存的,当然这些内存管理成本的付出主要也是为了给
string
常用命令:
set,get,decr,incr,mget 等。
应用场景:
string是最常用的一种数据类型,普通的key/value存储都可以归为此类,这里就不所做解释了。
string在redis内部存储默认就是一个字符串,被redisobject所引用,当遇到incr,decr等作时会转成数值型进行计算,此时redisobject的encoding字段为int。
常用命令:
hget,hset,hgetall 等。
应用场景:
我们简单举个实例来描述下hash的应用场景,比如我们要存储一个用户信息对象数据,包含以下信息:
用户id为查找的key,存储的value用户对象包含姓名,年龄,生日等信息,如果用普通的key/value结构来存储,主要有以下2种存储方式:
种方式将用户id作为查找key,把其他信息封装成一个对象以序列化的方式存储,这种方式的缺点是,增加了序列化/反序列化的开销,并且在需要修改其中一项信息时,需要把整个对象取回,并且修改作需要对并发进行保护,引入cas等复杂问题。
那么redis提供的hash很好的解决了这个问题,redis的hash实际是内部存储的value为一个hashmap,并提供了直接存取这个map成员的接口,如下图:
也就是说,key仍然是用户id,
value是一个map,这个map的key是成员的属性名,value是属性值,这样对数据的修改和存取都可以直接通过其内部map的key(redis里称内部map的key为field),
也就是通过 key(用户id) + field(属性标签)
就可以作对应属性数据了,既不需要重复存储数据,也不会带来序列化和并发修改控制的问题。很好的解决了问题。
这里同时需要注意,redis提供了接口(hgetall)可以直接取到全部的属性数据,但是如果内部map的成员很多,那么涉及到遍历整个内部map的
作,由于redis单线程模型的缘故,这个遍历作可能会比较耗时,而另其它客户端的请求完全不响应,这点需要格外注意。
上面已经说到redis
hash对应value内部实际就是一个hashmap,实际这里会有2种不同实现,这个hash的成员比较少时redis为了节省内存会采用类似一维数组的方式来紧凑存储,而不会采用真正的hashmap结构,对应的value
redisobject的encoding为zipmap,当成员数量增大时会自动转成真正的hashmap,此时encoding为ht。
list
常用命令:
lpush,rpush,lpop,rpop,lrange等。
应用场景:
redis
list的应用场景非常多,也是redis最重要的数据结构之一,比如twitter的关注列表,粉丝列表等都可以用redis的list结构来实现,比较好理解,这里不再重复。
redis
list的实现为一个双向链表,即可以支持反向查找和遍历,更方便作,不过带来了部分额外的内存开销,redis内部的很多实现,包括发送缓冲队列等也都是用的这个数据结构。
set
常用命令:
sadd,spop,embers,sunion 等。
应用场景:
redis
set对外提供的功能与list类似是一个列表的功能,特殊之处在于set是可以自动排重的,当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set内的重要接口,这个也是list所不能提供的。
set 的内部实现是一个
value永远为null的hashmap,实际就是通过计算hash的方式来快速排重的,这也是set能提供判断一个成员是否在内的原因。
sorted set
常用命令:
zadd,zrange,zrem,zcard等
使用场景:
redis sorted set的使用场景与set类似,区别是set不是自动有序的,而sorted
set可以通过用户额外提供一个优先级(score)的参数来为成员排序,并且是插入有序的,即自动排序。当你需要一个有序的并且不重复的列表,那么可以选择sorted
set数据结构,比如twitter 的public
gemfire和redis的区别
经过一番调研,最终敲定的解决方案是引入redis作为缓存。redis具有运行效率高,数据查询速度快,支持多种存储类型以及事务等优势,我们把经常读取,而不经常改动的数据放入redis中,读取这类数据的时候时候,直接与redis通信,极大的缓解了MySQL的压力。1. 数据存储:Redis将数据存储在内存中,可以通过持久化机制将数据定期写入磁盘,但是磁盘IO会影响性能;而GemFire可以将数据存储在内存中也可以存储在磁盘中,可以通过缓存数据到磁盘来避免内存不足的问题。
2. 数据模型:Redis使用键值存储模型,支持丰富的数据类型,如字符串、列表、哈希表、和有序等;而GemFire使用内存对象模型,可以存储Ja对象、JSON对象、XML文档等。
3. 数据分布:Redis使用一致性哈希算法将数据分布在多个缓存就是数据交换的缓冲区(cache),当浏览器执行请求时,首先会对在缓存中进行查找,如果存在,就获取;否则就访问数据库。上,每个负责部分数据的存储和查询;而GemFire支持多种分布策略,如哈希分区、范围分区、和备份等。
4. 事务支持:Redis支持简单的事务,可以将多个作封装在一个事务中,但是不支持复杂的事务和回滚作;而GemFire支持分布式事务,可以在多个上执行复杂的事务,并支持回滚作。
5. 应用场景:Redis适合存储小型数据,如缓存、会话数据、计数器、排行榜等;而GemFire适合存储大型数据和复杂对象,如金融交易数据、传感器数据、分布式会话等。
总的来说,GemFire和Redis都是高性能的分布式内存缓存系统,但是它们的应用场景和数据模型有所不同,需要根据具体的需求来选择合适的系统。
redis 怎么缓存数据库数据
缓存但是往往又有数据可靠性的需求,采用MySQL作为数据存储,不会因为内存问题而引起数据丢失,同时也可以利用关系数据库的特性实现很多功能。
所以就会很自然的想到是否可以采用MySQL作为数据存储引擎,Redis则作为Cache。而这种需求目前还没有看到有特别成熟的解决方案或工具,因此采用Gearman+PHP+MySQL UDF的组合异步实现MySQL到Redis的数据。
MySQL到Redis数据方案
无论MySQL还是Redis,自身都带有数据同步的机制,比较常用的MySQL的Master/Sle模式,就是由Sle端分析Master的binlog来实现的,这样的数据其实还是一个异步过程,只不过当都在同一内网时,异步的延迟几乎可以忽略。
那么理论上也可以用同样方式,分析MySQL的binlog文件并将数据插入Redis。但是这需要对binlog文件以及MySQL有非常深入的理解,同时由于binlog存在Statement/Row/Mixedll多种形式,分析binlog实现同步的工作量是非常大os.testFile("test", "D:test.txt");的。
如何使用redis做mysql的缓存
7.性能1redis不同数据类型提供一个统一的管理接口,实际作者也提供了多种方法帮助我们尽量节省内存使用,我们随后会具体讨论。,redis是一种内存性的数据存储服务,所以它的速度要比mysql快。
2,redis只支持String,hashmap,set,sortedset等基本数据类型,但是不支持联合查询,所以它适合做缓存。
3,有时候缓存的数据量非常大,如果这个时候服务宕机了,且开启了redis的持久化功能,重新启动服务,数据基本上不会丢。
4,redis可以做内存共享,因为它可以被多个不同的客户端连接。
5,做为mysql等数据库的缓存,是把部分热点数据先存储到redis中,或次用的时候加载到redis中,下次再用的时候,直接从redis中取。
6,redis中的数据可以设置过期时间expire,如果这个数据在一定时间内没有被延长这个时间,那个一定时间之后这个数据就会从redis清除。
所以,redis只是用来缓存数据库中经常被访问的数据,可以增加访问速度和并发量。而mysql只是提供一种数据备份和数据源的作用。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。