正切两角和公式

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

正切两角和公式介绍如下:

正切和角公式 正切和角公式推导过程几何正切和角公式 正切和角公式推导过程几何


正切和角公式 正切和角公式推导过程几何


两角和与的正弦余弦正切公式:sin(α±β)=sinα·cosβ±cosα·sinβ,cos(α+β)=cosα·cosβ-sinα·sinβ,tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)。

两角和()公式包括两角和的正弦公式、两角和的余弦公式、两角和的正切公式。两角和与的公式是三角函数恒等变形的基础,其他三角函数公式都是在此公式基础上变形得到的。

正弦公式是描述正弦定理的相关公式,而正弦定理是三角学中的一个基本定理,它指出:在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。几何意义上,正弦公式即为正弦定理。

常用的和角公式相关信息:

先利用单位圆(向量)推到两角和与的余弦公式,再利用诱导公式推导正弦公式,利用同角三角函数的基本关系推到正切公式。

正弦和公式始终是sin与cos相乘; 余弦和公式始终是cos与cos相乘,sin与sin相乘,两角和与的正弦公式:正=正余余正符号同两角和与的余弦公式:余=余余正正符号异。

两角和与的正切公式是什么?

两角和、的正切公式:

两角和、的正弦公式

sin(α+β)=sinαcosβ+co·半角公式:sαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

记忆方式:异名同号

正弦的展开肯定就是以正弦开头,然后满足异名,正弦配余弦,符号就和我们要求的符号相同。

两角和、的余弦公式

cos(α+tan(π/2-α)=cotαβ)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

记忆方式:同名异号

余弦的展开肯定就是以余弦开头,然后满足同名,余弦配余弦,正弦配正弦,符号就和我们要求的符号相异。

求带余切,正割,余割的三角函数公式

公式六:

余切cota=1/tana,

正割seca=1/cosa,

余割csca=1/sina,

另外,他们的商数关系是tana=sina/cosa,cota=cosa/sina,

他们之间的平方关系是:1+(tana)^2=(seca)^2,1+(cota)^2=(csca)^2。

扩展资料:

二倍角公式

sin2α=2sinαcosα

tan2α=2tanα/(1-tan^2(α))

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

半角公式

sin^2(α/2)5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina。=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

首先要知道:余割csca=1/sina, 正割seca=1/cosa,余切cota=1/tana:

平方关系1+(tana)^2=(seca)^2,1+(cota)^2=(csca)^2

商数关系tana/seca=sina,cota/csca=cosa

一、知识点定义来源和讲解:

1. 余切(cot):余切是三角函数中的一个比值函数,定义为正切的倒数。在直角三角形中,余切等于对边与邻边的比值。余切的定义来源于三角函数的定义。

2. 正割(sec):正割是三角函数中的一个比值函数,定义为余弦的倒数。在直角三角形中,正割等于斜边与邻边的比值。正割的定义来源于三角函数的定义。

3. 余割(csc):余割是三角函数中的一个比值函数,定义为正弦的倒数。在直角三角形中,余割等于斜边与对边的比值。余割的定义来源于三角函数的定义。

二、知识点运用:

余切、正割和余割是三角函数的常用衍生函数,它们在数学和物理学中具有广泛的应用。

在解决三角函数相关问题时,余切、正割和余割可以用于简化复杂的三角函数表达式,转换为其他已知三角函数的表达式,从而方便计算和推导。

三、知识点例题讲解:

例题1:已知角A的正弦值为 3/5,求解角A的余切值。

解析:余切是正切的倒数,而正切可以通过正弦的倒数求得。

正切的定义:tanA = sinA / cosA

余切的计算:cotA = 1 / tanA = 1 / (sinA / cosA) = cosA / sinA

代入已知数值:sinA = 3/5

由此可以得到:cosA = √(1 - sin^2A) = √(1 - (3/5)^2) = 4/5

余切的计算:cotA = cosA / sinA = (4/5) / (3/5) = 4/3

因此,角A的余切值为 4/3。

例题2:已知角B的余弦值为 2/3,求解角B的正割值和余割值。

解析:正割和余割可以通过余弦的倒数求得。

正割的定义:secB = 1 / cosB

余割的定义:cscB = 1 / sinB

代入已知数值:cosB = 2/3

正割的计算:secB = 1 / cosB = 1 / (2/3) = 3/2

余割的计算:cscB = 1 / sinB = 1 / (√(1 - cos^2B)) = 1 / (√(1 - (2/3)^2)) = 3/√5 = (3√5) / 5

因此,角B的正割值为 3/2,余割值为 (3√5) / 5。

四、扩展资料:

余切、正割和余割是三角函数的重要衍生函数,可以进一步探索它们与其他三角函数之间的关系,以及它们的性质和恒等式。

在三角函数的应用中,余切、正割和余割的性质和计算方法对于解决三角方程、分析周期性现象等具有重要意义。

深入学习三角函数及其衍生函数,可以进一步理解和应用三角学在数学、物理、工程、天文学等领域的重要性。

余切是正切的倒数

正割是正弦比上余弦

余割是余弦比上正弦

带余切(cot)、正割(sec)和余割(csc)是三角函数的倒数。

1. 带余切(cot):

带余切是正切(tan)的倒数。在一个直角三角形中,带余切定义为邻边(直角边)与对边(斜边上除直角边之外的部分)的比值。带余切的公式为:

cotθ = 1 / tanθ

2. 正割(sec):

正割是余弦(cos)的倒数。在一个直角三角形中,正割定义为斜边与邻边(直角边)的比值。正割的公式为:

secθ = 1 / cosθ

3. 余割(csc):

余割是正弦(sin)的倒数。在一个直角三角形中,余割定义为斜边与对边(斜边上除直角边之外的部分)的比值。余割的公式为:

cscθ = 1 / sinθ

需要注意的是,这些公式仅适用于定义域内的角度值。如果角度超出定义域,例如角度为90度的情况下,正割和余割是无穷大,带余切是未定义的。

此外,可以使用三角函数之间的基本关系来推导带余切、正割和余割的公式。例如,cotθ = 1 / tanθ 可以通过 tanθ = sinθ / cosθ 推导得到。

三角函数公式如下:

余弦公式:

$$cos(x) = frac{adj}{hyp}$$

正弦公式:

$$sin(x) = frac{opp}{hyp}$$

正割公式:

$$sec(x) = frac{1}{cos(x)}$$

余割公式:

余切公式:

$$tan(x) = frac{sin(x)}{cos(x)}$$

带余切公式:

$$cot(x) = frac{cos(x)}{sin(x)}$$

余切是邻边/对边,正割是斜边/对边,余割是斜边/邻边。

倒数关系:

余切cota=1/tana,

正割seca=1/cosa,

余割csca=1/sina,

商的关系:

tana=sina/cosa,cota=cosa/sina,

1的关系:

1+(tana)^2=(seca)^2,1+(cota)^2=(csca)^2。

高中三角函数的所有公式是什么啊?

同角三角函数间的基本关系式:

·平方关系:

sin^2(α)+cos^2(α)=1 cos^2a=(1+cos2a)/2

tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2

cot^2(α)+1=csc^2(α)

·积的关系:

sinα=tanαcosα

cosα=cotαsinα

tanα=sinαsecα

secα=tanαcscα

cscα=secαcotα

·倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边,

余弦等于角A的邻边比斜边

·三角cotα=cosαcscα函数恒等变形公式

·两角和与的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·辅助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

·公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和公式:

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

·其他:

sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

证明:

左边=2sinx(cosx+cos2x+...+cosnx)/2sinx

=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和)

=[sin(n+1)x+sinnx-sinx]/2sinx=右边

等式得证

sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

证明:

左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边

等式得证

编辑本段三角函数的角度换算

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

编辑本段正余弦定理

正弦定理是指在一个三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .

余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA

编辑本段部分高等内容

·高等代数中三角函数的指数表示(由泰勒级数易得):

sinx=[e^(ix)-e^(-ix)]/(2i)

cosx=[e^(ix)+e^(-ix)]/2

tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…

此时三角函数定义域已推广至整个复数集。

·三角函数作为微分方程的解:

Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。

补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。

编辑本段特殊三角函数值

a 0` 30` 45` 60` 90`

sina 0 1/2 √2/2 √3/2 1

cosa 1 √3/2 √2/2 1/2 0

tana 0 √3/3 1 √3 None

cota None √3 1 √3/3 0

幂级数

c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)

它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,.....及a都是常数, 这种级数称为幂级数.

泰勒展开式(幂级数展开法):

f(x)=f(a)+f'(a)/1!(x-a)+f''(a)/2!(x-a)2+...f(n)(a)/n!(x-a)n+...

实用幂级数:

ex = 1+x+x2/2!+x3/3!+...+xn/n!+...

ln(1+x)= x-x2/3+x3/3-...(-1)k-1xk/k+... (|x|<1)

sin x = x-x3/3!+x5/5!-...(-1)k-1x2k-1/(2k-1)!+... (-∞

cos x = 1-x2/2!+x4/4!-...(-1)kx2k/(2k)!+... (-∞

arcsin x = x + 1/2x3/3 + 13/(24)x5/5 + ... (|x|<1)

arccos x = π - ( x + 1/2x3/3 + 13/(24)x5/5 + ... ) (|x|<1)

arctan x = x - x^3/3 + x^5/5 - ... (x≤1)

sinh x = x+x3/3!+x5/5!+...(-1)k-1x2k-1/(2k-1)!+... (-∞

cosh x = 1+x2/2!+x4/4!+...(-1)kx2k/(2k)!+... (-∞

arcsinh x = x - 1/2x3/3 + 13/(24)x5/5 - ... (|x|<1)

arctanh x = x + x^3/3 + x^5/5 + ... (|x|<1)

在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。

--------------------------------------------------------------------------------

傅立叶级数(三角级数)

f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)

a0=1/π∫(π..-π) (f(x))dx

an=1/π∫(π..-π) (f(x)cosnx)dx

bn=1/π∫(π..-π) (f(x)sinnx)dx

三角函数的数值符号[sin(n+1)x+sinnx-sinx]/2sinx

正弦 一,二为正, 三,四为负

余弦 一,四为正 二,三为负

正切 一,三为正 二,四为负

编辑本段三角函数定义域和值域

sin(x),cos(x)的定义域为R,值域为〔-1,1〕

tan(x)的定义域为x不等于π/2+kπ,值域为R

cot(x)的定义域为x不等于kπ,值域为R

三角函数是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。小编整理了高中三角函数的公式如下,供大家查阅。

1高中三角函数公式

倍角公式

Sin2A=2SinA·CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2 是sinA的平方 sin2(A) )

半角公式

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=vercos(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

辅助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

三角函数常用公式

正弦函数 sinθ=y/r

余弦函数 cosθ=x/r

正切函数 tanθ=y/x

余切函数 cotθ=x/y

正割函数 secθ=r/x

三角函数和角公式

coversθ

一般的最常用公式有:Sin(A+B)=SinACosB+SinBCosASin(A-B)=SinACosB-SinBCosACos(A+B)=CosACosB-SinASinBCos(A-B)=CosACosB+SinASinBTan(A+B)=(TanA+TanB)/(1-TanATanB)Tan(A-B)=(TanA-TanB)/(1+TanATanB)同角三角函数的关系(即同角八式)·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanαcosαcosα=cotαsinαtanα=sinαsecαcotα=cosαcscαsecα=tanαcscαcscα=secαcotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1·商数关系:sina/cosa=tanacosa/sina=cota直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,sina=y/r余弦等于角A的邻边比斜边cosa=x/r正切等于对边比邻边,tana=y/x三角函数恒等变形公式·两角和与的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·其他:sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

三角函正切等于对边比邻边,数

高中数学两角和与的正弦,余弦,正切公式

tan^2(α)+1=sec^2(α)

sin20=cos70 cos110=-cos70 cos160=-cos20=-sisinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]n70

原式=-cos70cos70-sin70sin70=-(cos70cos70+sin70sin70)=-1

高考三角函数无非就是考变换、和化积、积化和、半角、2倍角公式加上一点函数的东西 运用熟练了很容易的

希望对你有用 谢谢!

cos110=cos(180-70)=-cos70

sin20=sin(90-20)=cos70

cos160=cos(180-20)=-cos20=-cos(90-70)=-sin70

故而原式=-(cos70cos70+sin70sin70)

=-1

sin20cos110+cos160sin70

=sin20cos110-cos(180-160)sin(180-70)

=sin20cos110-cos20sin110

=sin(20-110)

=sin(-90)=-1

正切和角公式

cos(2kπ+α)=cosα

口诀(正余弦两角和公式):赛壳壳赛符号同,壳壳赛赛符号异。

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cos反正弦函数α·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

再说一下tan和公式的记忆。tan和公式的右边分式,分子与分母符号是不同的,而左边与分子符号又是相同的。这样我们就能通过左边确定等式右边的符号。再记住上加下乘,就能把tan的每一项记住了。

三角函数的公式大全

三角函数常用公式:(^表示乘方,例如^2表示平方)

正弦函数

sinθ=y/r

余弦函数

正切函数

tanθ=y/x

余切函数

cotθ=x/y

正割函数

secθ=r/x

余割函数

cscθ=r/y

以及两个不常用,已趋于被淘汰的函数:

正矢函数

versinθ

=1-cosθ

余矢函数

vercosθ

=1-sinθ

同角三角函数间的基本关系式:

·平方关系:

sin^2(α)+cos^2(α)=1

cot^2(α)+1=csc^2(α)

·积的关系:

sinα=tanαcosα

cosα=cotαsinα

tanα=sinαsecα

secα=tanαcscα

cscα=secαcotα

·倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形abc中,

角a的正弦值就等于角a的对边比斜边,

余弦等于角a的邻边比斜边

三角函数恒等变形公式

·两角和与的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·辅助角公式:

asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中

sint=b/(a^2+b^2)^(1/2)

cost=a/(a^2+b^2)^(1/2)

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=vercos(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

·公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和cosθ=x/r公式:

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

cosα+cosβ=2cos[(α+β)/14、tan(π+α)=tanα2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]赞同50|

评论

正切的内角和公式?

两角和与的正切公式

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan([cos(n+1)x+cosnx-cosx-1]/2sinx=右边A-B)=(tanA-tan正弦和前后同号,余弦和前后异号,正弦和公式始终是sin与cos相乘; 余弦和公式始终是cos与cos相乘,sin与sin相乘B)/(1+tanAtanB)

两角和与的正弦,余弦和正切公式?

1+sinα=(sinα/2+cosα/2)^2

函数名

正弦

余弦

正切

余切

正割

余割

在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有

正弦函数

sinθ=y/r

余弦函数

正切函数

tanθ=y/x

余切函数

cotθ=x/y

正割函数

secθ=r/x

余割函数

cscθ=r/y

(斜边为r,对边为y,邻边为x。)

以及两个不常用,已趋于被淘汰的函数:

正矢函数

versinθ

=1-cosθ

余矢函数

=1-sinθ

同角三角函数间的基本关系式:

·平方关系:

sin^2(α)+cos^2(α)=1

cos^2a=(1+cos2a)/2

sin^2a=(1-cos2a)/2

cot^2(α)+1=csc^2(α)

·积的关系:

sinα=tanαcosα

cosα=cotαsinα

tanα=sinαsecα

secα=tanαcscα

cscα=secαcotα

·倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边,

余弦等于角A的邻边比斜边

·三角函数恒等变形公式

·两角和与的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·辅助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

·公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和公式:

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

·其他:

sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0

以及tan(2α)=2tanα/[1-tan^2(α)]

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

cosx+cos2x+...+cosnx=

证明:

左边=2sinx(cosx+cos2x+...+cosnx)/2sinx

=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+

sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx

(积化和)

=[sin(n+1)x+sinnx-sinx]/2sinx=右边

等式得证

sinx+sin2x+...+sinnx=

-[cos(n+1)x+cosnx-cosx-1]/2sinx

证明:

左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

=-

等式得证

全部在这里了!!!