常用拉氏变换公式表 常用拉普拉斯变换公式表

常用拉氏变换公式表 常用拉普拉斯变换公式表常用拉氏变换公式表 常用拉普拉斯变换公式表



您好,今天小天来为大家解答以上的问题。常用拉氏变换公式表相信很多小伙伴还不知道,现在让我们一起来看看吧!

1、拉普拉斯变换是对于t>=0函数值不为零的连续时间函数x(t)通过关系式: (式中-st为自然对数底e的指数)变换为复变量s的函数X(s)。

2、它也是时间函数x(t)的“复频域”表示方式。

3、 拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着重要作用。

4、 拉氏变换在大部份的应用中都是对射的,最常见的f(t)和F(s) 组合常印制成表,方便查阅。

5、拉氏变换和傅立叶变换有关,不过傅立叶变换将一个函数或是信号表示为许多弦波的叠加,属于「频域变换」。

6、 而拉氏变换则是将一个函数表示为许多矩的叠加,属于「时域变换」。

7、拉氏变换的好处就是能够将复杂的积分与微分的问题,变换成比较容易计算的代数方法,为什么要进行变换?因为很多时候频域变换比时域变换直观得多。

8、因此,拉氏变换较多被用于解决: (1).常数系数的线性微分或积分方程式。

9、 (2).分析线性非时变系统的输入输出信号。

10、 实务上,拉氏变换在物理及工程上常用来分析线性非时变系统,可用来分析电子电路、谐振子、光学仪器及机械设备,在这些分析中,拉氏变换可以作时域和频域之间的转换,在时域中输入和输出都是时间的函数,在频域中输入和输出则是复变角频率的函数。

本文到这结束,希望上面文章对大家有所帮助。