初中数学教案模板、教案格式及教案范文

【 #教案# 导语】一个好的教案要怎么写?教案的标准格式是什么呢?以下是 无 为大家精心整理的内容,欢迎大家阅读。

初中数学知识教学设计(初中数学知识教案)初中数学知识教学设计(初中数学知识教案)


初中数学知识教学设计(初中数学知识教案)


1.初中数学教案模板

1.课题

填写课题名称(初中代数类课题)

2.教学目标

(1)知识与技能:

通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;

(2)过程与方法:

通过......(讨论、发现、探究)的过程,提高......(分析、归纳、比较和概括)的能力;

(3)情感态度与价值观:

通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

3.教学重难点

(1)教学重点:本节课的知识重点

(2)教学难点:易错点、难以理解的知识点

4.教学方法(一般从中选择3个就可以了)

(1)讨论法

(2)情景教学法

(3)问答法

(4)发现法

(5)讲授法

5.教学过程

(1)导入

简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

(2)新授课程(一般分为三个小步骤)

①简单讲解本节课基础知识点(例:类比一元一次方程的解法,讲解一元一次不等式的解法和步骤)。

②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(例:分组讨论一元一次不等式的解法,归纳总结一元一次不等式的方法步骤,设置系数化为一,负号要变号的易错点)。

③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题(例:设置一元一次不等式的应用题,学生再次体会一元一次不等式解决实际问题,并且再次巩固不等式的解法)。

(3)课堂小结

教师提问,学生回答本节课的收获。

(4)作业提高

布置作业(尽量与实际生活相联系,有所创新)。

6.教学板书

2.初中数学教案格式

课程编码:______________________________________

总学时/周学时:/

开课时间:年月日第周至第周

授课年级、专业、班级:___________________________

使用教材:_______________________________________

授课教师:_______________________________________

1.章节名称

2.教学目的

3.课时安排

4.教学重点、难点

5.教学过程(包括教学内容、教师活动、学生活动、教学方法等)

6.复习巩固与作业要求

7.教学环境及教具准备

8.教学参考资料

9.教学后记

3.初中数学教案范文

教学目的

1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

2.使学生会列一元一次方程解决一些简单的应用题。

3.会判断一个数是不是某个方程的解。

重点、难点

1.重点:会列一元一次方程解决一些简单的应用题。

2.难点:弄清题意,找出“相等关系”。

教学过程

一、复习提问

一本笔记本1.2元。小红有6元钱,那么她多能买到几本这样的笔记本呢?

解:设小红能买到工本笔记本,那么根据题意,得1.2x=6

因为1.2×5=6,所以小红能买到5本笔记本。

二、新授

问题1:某校初中一年级328名 师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)

算术法:(328-64)÷44=264÷44=6(辆)

列方程:设需要租用x辆客车,可得。

44x+64=328(1)

解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看?

问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

通过分析,列出方程:13+x=(45+x)

问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的“三分之一”改为“二分之一”,那么是多少?动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

三、巩固练习

教科书第3页练习1、2。

四、小结

本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

五、作业

教科书第3页,习题6.1第1、3题。

新课标下初中数学如何教学设计

一.单元教学设计的意义教学设计是我们教学中非常重要的环节。大家都知道做任何事情都需要做一个设计,有一个设计就会使我们做的更加主动。单元设计,首先什么是单元,比如说一章,比如说一个模块,比如一个模块里的一块面,比如说一元二次方程这章,我们可以把它当作一个完整的内容来进行设计。当然,也可以做跨章节的内容的教学设计。比如说一次函数,我们可以把一次函数这章分为三块,一块是平面直角坐标系,函数知识初步,一块是一次函数的知识,第三块是反比例函数的内容。函数知识是初中的一个重点,怎么样对这些进行教学设计,我们有一个整体的思考非常重要。另外,老师应该能够关注关于方法和能力方面的单元教学设计。比如计算,我们就可以考虑一下,作为一个计算能力,在初一、二年级里,怎么样进行设计。使得我们的学生从小学的水平,能够有一个明显的提升。我们可以分析一下,支持计算能力的,在课程中有哪些载体。然后在这些载体中,应该如何帮助学生提升他的计算能力。所以我想这样的一些思考,都是单元教学的设计的很重要的内容,与我们传统单元的教学设计的内容,需要开拓一点,视野开拓一点。在单元教学设计,有一个,或者有两个核心的主题词,个是整体,第二个是效率。我觉得做好单元教学设计,会使你知道在什么时候,我讲到什么程度,我后面还会对这件事情有所解释的。当然现在对单元教学设计的思考范围还是更大一些。比如对有一些概念,比如说弧度的概念,我们也可以对他有一个单元的思考。因为绝不是说讲弧度的定义的时候,才会涉及到弧度。只能这样就无法向学生解释清楚为什么加人弧度概念等等,所以我们应该以一个整体的观点来思考我们整体的教学。这样会提高教学效率。二.单元教学设计的含义单元教学设计:对教材中的章或单元等相对完整、综合的教学内容进行教学设计。一课时教学设计:对适合在一节课内实施的教学内容进行教学设计。三.单元教学设计的原则与注意事项 (1)以单元或章为单位,体现各个知识点之间的逻辑关系 (2)体现单元学习的完整性 (3)体现单元学习的层次性 (4)多种教学形式相结合,教师主导、学生探究相结合 (5)注重单元内容的综合运用 (6)提供评价方法及模板…… 四.如何进行单元教学设计(1)基本结构框架 (2)新课程标准指出:数学课程的设计,要充分考虑本学段学生数学学习的特点,符合学生的认知规律和心里特征,有利于激发学生的学习兴趣,引发学生的数学思考;充分考虑数学本身的特点,体现数学的实质;在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验数学问题、构建数学模型、寻求结果、解决问题的过程。 4.学生分析:习惯、态度、对学过内容的掌握 5.教材分析(1)教材分了17个学时讲授,2个学时复习,写出具体课时安排(2)可能遇到问题 6.教学设计的一些问题(1)什么内容以为主(2)如何利用学过的知识(3)如何组织学生自主学习:利用符号语言梳理学过内容(4)让学生总结一些好的案例:比较不同语言表述同一对象(5)如何提示学生“实数和二次根式”在后面学习中的作用(6)“实数和二次根式”将伴随学生经历从初中到高中学习的过渡,在教学设计中关注以下问题:①学生的学习习惯;②学生学好数学的信心;③帮助学生梳理学习过的内容 7.教学反思、总结(1)收集一些教学案例(2)与自己教学比较(3)完成一个总结(4)修订自己的教学设计

初中数学设计教案模板范文

任课教师课前会根据教学方向和内容,包括学生的学习进程情况,做好教案准备,以便教学工作的正常开展。根据教案将课堂的几十分钟高效率的运用起来,实现高效课堂。下面是由我为大家整理的“初中数学设计教案模板范文”,仅供参考,欢迎大家阅读。

初中数学设计教案模板范文(一)

一、教学目标

(一)认知目标:

1.了解二元一次方程组的概念。

2.理解二元一次方程组的解的概念。

3.会用列表尝试的方法找二元一次方程组的解。

(二)能力目标:

1.渗透把实际问题抽象成数学模型的思想。

2.通过尝试求解,培养学生的探索能力。

(三)情感目标:

1.培养学生细致,认真的学习习惯。

2.在积极的教学评价中,促进师生的情感交流。

二、教学

1.二元一次方程组及其解的概念。

2.用列表尝试的方法求出方程组的解。

三、教学过程

(一)创设情景,引入课题:

1.本班共有40人,请问能确定男女各几人吗?为什么?

(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)

(2)这是什么方程?根据什么?

2.男生比女生多了2人。设男生x人,女生y人,方程如何表示?x,y的值是多少?

3.本班男生比女生多2人且男生共40人,设该班男生x人,女生y人。方程如何表示?

两个方程中的x表示什么?类似的两个方程中的y都表示?

像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

4.点明课题:二元一次方程组。

(二)探究新知,练习巩固:

1.二元一次方程组的概念

(1)请同学们看课本,了解二元一次方程组的的概念,并找出由教师板书。

(2)练习:判断下列是不是二元一次方程组:

x+y=3,x+y=200,

2x-3=7,3x+4y=3,

y+z=5,x=y+10,

2y+1=5,4x-y2=2。

学生作出判断并要说明理由。

2.二元一次方程组的解的概念

(1)由学生给出引例的,教师指出这就是此方程组的解。

(2)练习:把下列各组数的题序填入图中适当的位置:

x=1;x=-2;x=;-x=?

y=0;y=2;y=1;y=?

方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。

2x+3y=2。

(3)既满足个方程也满足第二个方程的解叫作二元一次方程组的解。

(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。

y=0.55x+2a=2y。

(三)合作探索,尝试求解:

现在我们一起来探索如何寻找方程组的解呢?

1.已知两个整数x,y,试找出方程组3x+y=8的解。

2x+3y=10。

学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。

提炼方法:列表尝试法。

一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.

2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。

(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。 (2)用列表尝试的方法解出这个方程组的解。

由学生完成,并分析讲解。

(四)课堂小结,布置作业:

1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)

2.你还有什么问题或想法需要和大家交流?

3.作业本。

教学设计说明:1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。

2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和者。

3.本课在设计时对教材也进行了适当改动。例题方面考虑到数时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。

初中数学设计教案模板范文(二)

一、教学目的

1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

2.使学生会列一元一次方程解决一些简单的应用题。

3.会判断一个数是不是某个方程的解。

二、重点、难点

1.重点:会列一元一次方程解决一些简单的应用题。

2.难点:弄清题意,找出“相等关系”。

三、教学过程

(一)复习提问

一本笔记本1.2元。小红有6元钱,那么她多能买到几本这样的笔记本呢?

解:设小红能买到工本笔记本,那么根据题意,得1.2x=6。

因为1.2×5=6,所以小红能买到5本笔记本。

(二)新授

问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)

算术法:(328-64)÷44=264÷44=6(辆)。

列方程:设需要租用x辆客车,可得。

44x+64=328(1)

解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看?

问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

通过分析,列出方程:13+x=(45+x)。

问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的“三分之一”改为“二分之一”,那么是多少?动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

四、巩固练习

教科书习题

五、小结

本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

初中数学设计教案模板范文(三)

一、教学目标

1.了解公式的意义,使学生能用公式解决简单的实际问题;

2.初步培养学生观察、分析及概括的能力;

3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

二、教学建议

(一)教学重点、难点

重点:通过具体例子了解公式、应用公式。

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

(二)重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

(三)知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

三、教法建议

1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

初中数学设计教案模板范文(四)

一、教学目标

(一)知识教学点

1.使学生能利用公式解决简单的实际问题。

2.使学生理解公式与代数式的关系。

(二)能力训练点

1.利用数学公式解决实际问题的能力。

2.利用已知的公式推导新公式的能力。

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践。

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。

二、学法

1.数学方法:发现法,以复习提问小学里学过的公式为基础、突破难点。

2.学生学法:观察→分析→推导→计算

三、重点、难点、疑点及解决办法

1.重点:利用旧公式推导出新的图形的计算公式。

2.难点:同重点。

3.疑点:把要求的图形如何分解成已经熟悉的图形的和或。

四、课时安排

一课时。

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。

初中数学教学设计方案有哪些

教案一般包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等内容。下面是我分享给大家的初中数学教学设计方案的资料,希望大家喜欢!

初中数学教学设计方案一

勾股定理

一、教材分析:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

教材在编写时注意培养学生的动手作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。2、能够灵活地运用勾股定理及其计算。3、培养学生观察、比较、分析、推理的能力。4、通过介绍古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久 文化 的思想感情,培养他们的民族自豪感和钻研精神。

二、教学重点:勾股定理的证明和应用。

三、教学难点:勾股定理的证明。

四、教法和学法: 教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:

以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

切实体现学生的主体地位,让学生通过观察、分析、讨论、作、归纳,理解定理,提高学生动手作能力,以及分析问题和解决问题的能力。

通过演示实物,学生观察、作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

五、教学程序:本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

(一)创设情境以古引新

1、由 故事 引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

3、板书课题,出示学习目标。(二)初步感知理解教材

教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

(三)质疑解难讨论归纳:1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。2、教师学生按照要求进行拼图,观察并分析;

(1)这两个图形有什么特点?(2)你能写出这两个图形的面积吗?

(3)如何运用勾股定理?是否还有其他形式?

这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,后,师生共同归纳,形成一致意见,终解决疑难。

(四)巩固练习强化提高

1、出示练习,学生分组解答,并由学生 总结 解题规律。课堂教学中动静结合,以免引起学生的疲劳。

2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

(五)归纳总结练习反馈

学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生完成。

本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

初中数学教学设计方案二

《平行四边形》

一、 说教材:这节课主要是通过测量作活动认识平行四边形,了解平行四边形对边平行且相等,对角相等,并掌握平行四边形底和高的概念,初步会画出平行四边形底上的高。

说教法:新教材的引入 方法 与以往的不同,是采用两条等宽色带进行交叠后产生的四边形来引入平行四边形的。首先突出的是平行四边形“面”的形象,然后再到“边”(面的边缘)。 教学分两两个环节。步是认识平行四边形。让学生观察两条互相平行的透明色带交叠出的四边形,进而观察这些四边形的特点。学生通过作、比较、思考后发现:这些四边形的两组对边分别平行,然后学生小结平行四边形的定义,并给出数学记号。让学生找生活中的平行四边形的例子,一方面可以丰富对平行四边形的表象,另一方面加深学生“对两组对边分别平行”的认识。

第二步是认识平行四边形的底和高。平行四边形的底和高是相对的,而非的。平行四边形的任何一条边都可以为底边,那么从底边的对边上的一点出发做底边的垂线,该点与垂足之间的线段就是该底边上的高。然而“高”的概念对学生来说不容易建立,以为学生在生活 经验 中的高,往往是身高、树高、塔高等,指的是直立于地面上的对象的高度,隐含着垂直的定义。因此教材中,我从垂线这一概念引入,再通过垂线段建立起高的概念,同时进行作观察,这些高的位置与关系。从中得出:同一底边上可以画出无数条高,这些高的长度都相等,但在一般情况下,我们只要作一条高就可以了。并在此基础上进行拓展,如形外高的作,或者底不是水平方向的怎样作高等,从而拓宽了学生对平面图形中“高”的认识。

19.1平行四边形

[知识与能力目标]:1、通过作活动认识平行四边形。 2、掌握平行四边形底和高的概念,并初步会画出平行四边形底上对应的高。

[过程与方法]

[情感目标]:让学生享受学习的快乐,分享成功的喜悦。【教学重点】:会画出平行四边形底上对应的高。【教学难点】:会画出平行四边形底上对应的【教学过程】

一、创设情景、激发兴趣

1、同学们,你们认识了哪些几何图形?这些几何图形在我们的生活中随处可见。它使我们的生活更加丰富多彩。

2、出示 发现什么? ------出现了一个新的四边形

这个四边形有什么特殊呢?今天我们就来研究一下。

板书:平行四边形

二、新课探究

1、师:根据你对平行四边形的认识,请你选择小棒摆一个平行四边形。 指名学生用实投展示,组织学生评价。

2、师:打开学具袋,从中找到平行四边形。

3、问:请你们将学习小组找到的平行四边形放在一起,观察一下,看看你能发现什么?

提出要求:四人一组,充分利用学具,开动脑筋,想办法,共同探讨。 小组汇报,集体交流。 归纳概括平行四边形的特征。

问:我们通过观察、动手作,用自己的方法发现了平行四边形的特征,那什么是平行四边形呢?你能用自己的话说一说吗?

小结:

两组对边分别平行的四边形叫做平行四边形。

4、出示图上的物体都是我们经常见到的,推拉铁门、栏杆、标志、花窗。 这些物体中都隐藏着平行四边形,你能把它找出来吗?

5、判断:下面的图形是不是平行四边形?

判断一个图形是不是平行四边形,你认为关键是什么?

三、平行四边形的底与高

行四边形的底与高

1、学生在作业纸上自己试画平行四边形的高。

2、教师指导板书画高的方法。

问:通过画高,你有什么新的发现?

(1)平行四边形有4条底,每一条边都可以作为底。

(2)同一条底上有无数条高,每条高都相等。

3、识别、提高。

(1)投影出示:画在平行四边形外边的高,让学生识别认识。

小结:平行四边形的高有的可以画在平行四边形的里边,有的可以画在平行四边形的外边,不管画在哪儿都要注意底和高的对应关系.

4、画高练习

初中数学教学设计方案三

认识平行四边形说课稿

【说教材】

一、说课内容:苏教版数学四年级下册第43~45页。

二、教学内容的地位、作用和意义:

这部分内容是在学生已经初步掌握了长方形、正方形、三角形的特征,以及初步认识平行和相交的基础上,进一步认识平行四边形,并掌握其特征。通过这节课深入的学习,使学生为今后进一步学平行四边行面积计算打下基础。教材中个例题,首先联系生活实际,让学生找出一些常见物体上的平行四边形,再要求学生根据个人的生活经验举例,充分感知平行四边形;接着让学生做出一个平行四边形并相互交流,初步感受平行四边形的基本特征。在此基础上,抽象出平行四边形的图形让学生认识,学生探索发现平行四边形的基本特征。第二个例题认识平行四边形的底和高,并揭示高和底的意义。“试一试”让学生动手测量几个平行四边形指定底边上的高及相应的底,进一步感受高与底的意义。

三、说目标

1、知识与技能目标

(1)理解平行四边形的概念及其特征。

(2)认识平行四边形的底和高,会画高。

(3)培养学生实践能力,观察能力、分析能力。

2、过程与方法目标

让学生通过动手作,动眼观察,动口表达,动脑思考等方式使学生在活动中进一步积累认识图形的 学习经验 ,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。

3、情感态度与价值观目标

让学生感受图形与生活的密切联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣,在探索中感受成功的乐趣。

四、教学重点、难点:

教学重点:是认识平行四边形;利用材料做平行四边形并发现其特征;能测量或画出平行四边形的高。

教学难点:是学生在做平行四边形的过程中体会其特征。

五、说教具和学具准备

教具:三角板、平行四边形纸片、长方形活动框、小黑板等。

学具:三角板、平行四边形纸片、量角器。

【说学情】

四年级学生思维活跃,求知欲强,喜欢动手、动脑。有很强的好奇心和探索欲望。因此在教学中我抓住这些特点让他们通过动眼观察、动手作、动脑分析归纳等来理解所学知识。

【说教法和学法】

这节课教师要注重以教师的导和学生的学为主线,通过教师提问、演示、指导。学生动手作、观察、分析、讨论、归纳等方法来完成教学,使学生在轻松愉快中获得新知。我们认为在本课教学中应体现以下几点

一、联系生活实际进行教学

“数学的生活化,让学生学习现实的数学”是新课程理念之一。教学时应先让学生从生活场景图中找平行四边形,再寻找生活中的平行四边形。后举例说明平行四边形容易变形的特性在生活中的应用。使学生感受到“数学从生活中来,到生活中去”。使数学课堂回归到生活世界。

二、让学生在活动中探究

心理学家皮亚杰说:“活动是认识的基础,智慧从动作开始。”在教学中通过学生做平行四边形、相互交流,从中感受平行四边形的特征。在“想想做做”中通过拼一拼、移一移、剪一剪等活动,让学生感受不同平面图形之间的联系。

三、思考与合作交流

本课教学安排了两次合作交流,在合作交流之前我都给予学生充足的时间去思考,这样在合作交流时才有话可说,思维才能碰撞。

【说教学程序】

一、创设情境 导入新课

1、介绍七巧板

师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?

一千多年前,人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。

2、导入:今天就让我们一起来认识其中的一个图形—平行四边形。(出示课题)

【设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热情。】

二、尝试探索 建立模型

(一)认一认 形成表象

师:老师这儿的图形就是平行四边形。改变方向后问:它还是平行四边形吗?

不管平行四边形的方向怎样变化,它都是一个平行四边形。(图贴在黑板上)

(二)找一找 感知特征

1、在例题图中找平行四边形

师:老师这有几幅图,你能在这上面找到平行四边形吗?

2、寻找生活中的平行四边形

师:其实在我们周围也有平行四边形,你在哪些地方见过平行四边形?(可相机出示:活动衣架)

(三)做一做 探究特征

1、刚才我们在生活中找到了一些平行四边形,现在你能利用手边的材料做出一个平行四边形吗?

2、在小组里交流你是怎么做的并选代表在班级里汇报。

3、刚才同学们成功的做出了一个平行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流)

4、全班交流,师小结平行四边形的特征。(两组对边分别平行并且相等;对角相等;内角和是360度。)

【设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的身体去亲身经历,用自己的心灵去感悟。这里通过认平行四边形、找平行四边形和做平行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了平行四边形的特征。】

(四)练一练 巩固表象

完成想想做做第1、2题

(五)画一画 认识高、底

1、出示例题,你能量出平行四边形两条红线间的距离吗?(学生在自制的图上画) 说说 你是怎么量的?

2、师:刚才你们画的这条垂直线段就是平行四边形的高。这条对边就是平行四边形的底。

3、平行四边形的高和底书上是怎么说的呢?(学生看书)

4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动)

5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系)

6、画高(想想做做第5题)(提醒学生画上直角标记)

三、动手作 巩固深化

1、完成想想做做第3、4题

第3题:拼一拼、移一移,说说怎样移的?

第4题引入:木匠张师傅想把一块平行四边形的木板锯成两部分,拼成一张长方形桌面,如你是张师傅,该怎么锯呢?想试试吗?找一张平行四边形的纸试一试。

2、完成想想做做第6题 (课前做好,课上活动。)

(1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。

(2)判断:长方形是平行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的平行四边形?(特殊)特殊在哪了?

(3)得出平行四边形的特性

师再捏住平行四边形的对角向里推。看你发现了什么?

师:三角形具有稳定性,通过刚才的动手作,你觉得平行四边形有什么特性呢?(不稳定性、容易变形)

(4)特性的应用

师:平行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书P45“你知道吗?”)

【设计意图:】

四、畅谈收获 拓展延伸

1、师:今天这节课你有什么收获吗?

2、用你手中的七巧板拼我们学过的图形。

3、寻找平行四边形容易变形的特性在生活中的应用。

【设计意图:扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找平行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。

猜你喜欢:

1. 初中数学教案模板有哪些

2. 北师大版初中数学教案有哪些

3. 初中七年级数学教案有哪些

4. 初级中学数学教学大纲有哪些

5. 初中整式教学设计

初中数学教案

初中数学教案 篇1 一、教学目的:

1、理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;

2、在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

二、重点、难点

1、教学重点:菱形的两个判定方法.

2、教学难点:判定方法的证明方法及运用.

三、例题的意图分析

本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.

四、课堂引入

1、复习

(1)菱形的定义:一组邻边相等的平行四边形;

(2)菱形的性质1:菱形的四条边都相等;

性质2:菱形的对角线互相平分,并且每条对角线平分一组对角;

(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)

2、【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?

3、【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?

通过演示,容易得到:

菱形判定方法1对角线互相垂直的平行四边形是菱形.

注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.

通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:

菱形判定方法2四边都相等的四边形是菱形.

五、例习题分析

例1(教材P109的例3)略

例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.

求证:四边形AFCE是菱形.

证明:∵四边形ABCD是平行四边形,

∴AE∥FC.

∴∠1=∠2.

又∠AOE=∠COF,AO=CO,

∴△AOE≌△COF.

∴EO=FO.

∴四边形AFCE是平行四边形.

又EF⊥AC,

∴AFCE是菱形(对角线互相垂直的平行四边形是菱形).

※例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.

求证:四边形CEHF为菱形.

略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.

所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.

六、随堂练习

1、填空:

(1)对角线互相平分的四边形是;

(2)对角线互相垂直平分的四边形是________;

(3)对角线相等且互相平分的四边形是________;

(4)两组对边分别平行,且对角线的四边形是菱形.

2、画一个菱形,使它的两条对角线长分别为6cm、8cm.

3、如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。

七、课后练习

1、下列条件中,能判定四边形是菱形的是

(A)两条对角线相等(B)两条对角线互相垂直

(C)两条对角线相等且互相垂直(D)两条对角线互相垂直平分

2、已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.

3、做一做:

设计一个由菱形组成的花边图案.花边的长为15cm,宽为4cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.

初中数学教案 篇2

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:

一、试一试

1、设矩形花圃的垂直于墙的一边AB的`长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

2、x的值是否可以任意取?有限定范围吗?

3、我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,

对于1.可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积;面积为50m2。对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0<x<10。对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0<x<10)就是所求的函数关系式.

二、提出问题

某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润?在这个问题中,可提出如下问题供学生思考并回答:

1、商品的利润与售价、进价以及销售量之间有什么关系?

[利润=(售价-进价)×销售量]

2、如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

[10-8=2(元),(10-8)×100=200(元)]

3、若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?

[(10-8-x);(100+100x)]

4、x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]

5、若设该商品每天的利润为y元,求y与x的函数关系式。

[y=(10-8-x)(100+100x)(0≤x≤2)]

将函数关系式y=x(20-2x)(0<x<10=化为:

y=-2x2+20x(0<x<10)……………………………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D(0≤x≤2)……………………(2)

三、观察;概括

1、教师学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

(1)函数关系式(1)和(2)的自变量各有几个?

(各有1个)

(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)

(3)函数关系式(1)和(2)有什么共同特点?

(都是用自变量的二次多项式来表示的)

(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得值。

2、二次函数定义:形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫项的系数,c叫作常数项.

四、课堂练习

1、(口答)下列函数中,哪些是二次函数?

(1)y=5x+1(2)y=4x2-1

(3)y=2x3-3x2(4)y=5x4-3x+1

2、P3练习第1,2题。

五、小结

1、请叙述二次函数的定义.

2、许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

六、作业:略

初中数学教案 篇3

一、教学目标:

1、知识目标:

①能准确理解的几何意义和代数意义。

②能准确熟练地求一个有理数的。

③使学生知道是一个非负数,能更深刻地理解相反数的概念。

2、能力目标:

①初步培养学生观察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3、情感目标:

①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点

教学重点:的几何意义和代数意义,以及求一个数的。

教学难点:定义的得出、意义的理解及求一个负数的。

三、教学方法

启发式、讨论式和谈话法

四、教学过程

(一)复习提问

问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

(二)新授

1、引入

结合教材P63图2-11和复习问题,讲解6与-6的的意义。

2、数a的的意义

①几何意义

一个数a的就是数轴上表示数a的点到原点的距离。数a的记作|a|.

举例说明数a的的几何意义。(按教材P63的倒数第二段进行讲解。)

强调:表示0的点与原点的距离是0,所以|0|=0.

指出:表示“距离”的数是非负数,所以是一个非负数。

②代数意义

把有理数分成正数、零、负数,根据的几何意义可以得出的代数意义:一个正数的是它本身,一个负数的是它的相反数,0的是0.

用字母a表示数,则的代数意义可以表示为:

指出:的代数定义可以作为求一个数的的方法。

3、例题精讲

例1.求8,-8的。

按教材方法讲解。

例2.计算:|2.5|+|-3|-|-3|.

解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3

例3.已知一个数的等于2,求这个数。

解:∵|2|=2,|-2|=2

∴这个数是2或-2.

五、巩固练习

练习一:教材P641、2,P66习题2.4A组1、2.

练习二:

1、小于4的整数是____.

2、小的数是____.

已知|2x-1|+|y-2|=0,求代数式3x2y的值。

六、归纳小结

本节课从几何与代数两个方面说明了的意义,由的意义可知,任何数的都是非负数。的代数意义可以作为求一个数的的方法。

七、布置作业

教材P66习题2.4A组3、4、5.

初中数学教案 篇4

一、教材分析

本节内容是教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式节整式加减第2小节整式的加减。

二、设计思想

本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。

八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。

三、教学目标:

(一)知识技能目标:

1、理解同类项的含义,并能辨别同类项。

2、掌握合并同类项的方法,熟练的合并同类项。

3、掌握整式加减运算的方法,熟练进行运算。

(二)过程方法目标:

1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。

2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。

3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。

(三)情感价值目标:

1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。

2、通过学习活动培养学生科学、严谨的学习态度。

四、教学重、难点:

合并同类项

五、教学关键:

同类项的概念

六、教学准备:

教师:

1、筛选数学题目,精心设置问题情境。

2、制作大小不等的两个长方体纸盒实物模型,并能展开。

3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)

学生:

1、复习有关单项式的概念、有理数四则运算及去括号的法则)

2、每小组制作大小不等的两个长方体纸盒模型。

初中数学教案 篇5

教学目的:

1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如ax÷b=c的方程的解法,会列上述方程解决两步计算的实际问题。

2、提高分析数量关系的能力,培养学生思维的灵活性。

3、在积极参与数学活动的过程中,树立学好数学的信心。

教学重点、难点:

学生分析问题,找出题目中的等量关系。

教学对策:

在积极参与数学活动的过程中,树立学好数学的信心。

教学准备:

教学光盘

教学过程:

一、复习准备

1、解方程(练习一第6题的第1、3小题)

4x+12=50

2.3x-1.02=0.36

学生完成,再指名学生板演并讲评,集体订正。

二、尝试练习

师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。

出示:30x÷2=360

学生尝试完成,全班交流。

指名学生说一说,解这个方程是步需要做什么?这样做依据了等式的什么性质?

三、巩固练习

1、出示练习一第7题。

(1)分析数量关系

提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah÷2。联系这个公式你能找出数量之间的相等关系吗?(生思考后在小组内交流)指名口答。你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x÷2=0.39。

第⑵题生思考并列出方程,在小组内说说自己的思考过程后全班交流。板书:3x+18=19.8。

(2)学生计算,并检验是否正确,全班核对。

小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。

2、练习一第8题。

学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)

学生解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,后核对解方程的过程。(提示学生可从得数的合理性来初步检验)

3、练习一第9题。

学生思考,指名分析数量关系,教师结合学生回答画出线段图帮助学生理解题意。

学生解方程再集体订正。

4、练习一第10题。

教师简单介绍相关天文知识后,学生解答,然后及时交流,教师及时讲评。

5、练习一第11题。

学生读题后教师提问:在本题中出现了两个问题,那么我们在写设句时要注意什么?(提示学生用不同的字母分别表示小亮出生时的身高和体重)

学生解决,集体核对。结合学生板演情况进行讲评,进一步规范学生的书写格式。

6、练习一第12题。

提问:你能看懂这张上所提供的信息吗?数量间有怎样的等量关系呢?

学生列方程解答,同桌同学互相检查,再集体订正。

7、练习一第13题。

学生阅读第13题,理解后解决问题,再交流。

教师再补充几题,如:98.6、212华氏度相当于多少摄氏度等。

四、全课小结

说一说你这一节课的学习收获及还有什么问题。

五、布置作业

完成配套习题。

初中数学教案设计范例精选

初中数学教案设计范例精选

教学设计 是一个系统设计并实现学习目标的过程,它遵循学习效果的原则,是课件开发质量高低的关键所在。以下是我为大家准备的初中数学教案设计范例,欢迎大家前来参阅。

初中数学教案设计范例【1】

《角平分线的性质》

(一)创设情境 导入新课

不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?

如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?

设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

(二)合作交流 探究新知

(活动一)探究角平分仪的原理。具体过程如下:

播放访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其 中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。

设计目的:用生活中的实例感知。以近大事作引入点,以常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。

(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流作心得.

分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

讨论结果展示: 教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:

已知:∠AO B.

求作:∠AOB的平分线.

作法:

(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.

(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.

(3)作射线OC,射线OC即为所求.

设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

议一议:

1.在上面作法的第二步中,去掉“大于 MN的长”这个条件行吗?

2.第二步中所作的两弧交点一定在∠AOB的内部吗?

设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。

学生讨论结果总结:

1.去掉“大于 MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.

2.若分别以M、N为圆心,大于 MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.

3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.

4.这种作法的可行性可以通过全等三角形来证明.

(活动三)探究角平分线的性质

思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。这样的三角形有多少对?

这样设计的目的是加深对全等的认识。

初中数学教案设计范例【2】

一、教学目标:

1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质。

3、弄清一次函数与正比例函数的区别与联系。

4、掌握直线的平移法则简单应用。

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:

重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:

1、一次函数与正比例函数的定义:

一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。

正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2、一次函数与正比例函数的区别与联系:

(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx

平行的一条直线。

基础训练:

1、写出一个图象经过点(1,— 3)的函数解析式为:

2、直线y=—2X—2不经过第 象限,y随x的增大而。

3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:

4、已知正比例函数 y =(3k—1)x,,若y随x的增大而增大,则k是:

5、过点(0,2)且与直线y=3x平行的直线是:

6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1y2,则m的取值范围是:

7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。

8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为 。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

(1)求线段AB的长。

(2)求直线AC的解析式。

初中数学教案设计范例【3】

一、教学目标:

1、理解二元一次方程及二元一次方程的解的概念;

2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

4、在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。

二、教学重点、难点:

重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三、教学方法与教学手段:

通过与一元一次方程的比较,加强学生的类比的思想方法; 通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。

四、教学过程:

1、情景导入:

链接:x70岁以上老人可领取生活补助。

得到方程:80a+150b=902 880、

2、新课教学:

学生观察方程80a+150b=902 880与一元一次方程有异同?

得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。

做一做:

(1)根据题意列出方程:

①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价、设苹果的单价x元/kg , 梨的单价y元/kg ;

②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:

(2)课本P80练习2、判定哪些式子是二元一次方程方程。

合作学习:

活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。

问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人、团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行? 为什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等? 由学生检验得出代入方程后,能使方程两边相等、得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。

并提出注意二元一次方程解的书写方法。

3、合作学习:

给定方程x+2y=8,男同学给出y(x取小于10的整数)的值,女同学马上给出对应的x的值; 接下来男女同学互换、(比一比哪位同学反应快)请算的快准确的同学讲他的计算方法、提问:给出x的值,计算y的值时,y的系数为多少时,计算y为简便?

出示例题:已知二元一次方程 x+2y=8。

(1)用关于y的代数式表示x;

(2)用关于x的代数式表示y;

(3)求当x= 2,0,—3时,对应的y的值,并写出方程x+2y=8的三个解。

(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)

4、课堂练习:

(1)已知:5xm—2yn=4是二元一次方程,则m+n=;

(2)二元一次方程2x—y=3中,方程可变形为y= 当x=2时,y= ;

5、你能解决吗?

小红到邮局给远在农村的寄挂号信,需要邮资3元8角、小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案。

6、课堂小结:

(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

(2)二元一次方程解的不定性和相关性;

(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

7、布置作业:

初中数学教学设计三篇

【 #教案# 导语】教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。 准备了以下内容,供大家参考!

篇一:《正弦和余弦(二)》

一、素质教育目标

(一)知识教学点

使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.

(二)能力训练点

逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.

(三)德育渗透点

培养学生思考、勇于创新的精神.

二、教学重点、难点

1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.

2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用.

三、教学步骤

(一)明确目标

1.复习提问

(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.

(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).

(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.

2.导入新课

根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题.

(二)、整体感知

关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.

(三)重点、难点的学习和目标完成过程

1.通过复习特殊角的三角函数值,学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃.

2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及思考、勇于创新的精神.

3.教师板书:

任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.

sinA=cos(90°-A),cosA=sin(90°-A).

4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固.

已知∠A和∠B都是锐角,

(1)把cos(90°-A)写成∠A的正弦.

(2)把sin(90°-A)写成∠A的余弦.

这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.

(2)已知sin35°=0.5736,求cos55°;

(3)已知cos47°6′=0.6807,求sin42°54′.

(1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,将题目变形:

(2)已知sin35°=0.5736,则cos______=0.5736.

(3)cos47°6′=0.6807,则sin______=0.6807,以培养学生思维能力.

为了配合例3的教学,教材中配备了练习题2.

(2)已知sin67°18′=0.9225,求cos22°42′;

(3)已知cos4°24′=0.9971,求sin85°36′.

学生完成练习2,就说明定理的教学较成功,学生基本会运用.

教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.

(四)小结与扩展

1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.

2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.

四、布置作业

篇二:《正弦和余弦》

一、素质教育目标

(一)知识教学点

使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.

(二)能力训练点

逐步培养学生会观察、比较、分析、概括等逻辑思维能力.

(三)德育渗透点

学生探索、发现,以培养学生思考、勇于创新的精神和良好的学习习惯.

二、教学重点、难点

1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.

2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师学生比较、分析,得出结论.

三、教学步骤

(一)明确目标

1.如图6-1,长5米的架在高为3米的墙上,则A、B间距离为多少米?

2.长5米的以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?

3.若长5米的以倾斜角40°架在墙上,则A、B间距离为多少?

4.若长5米的靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?

前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.

通过四个例子引出课题.

(二)整体感知

1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.

学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.

2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.

(三)重点、难点的学习与目标完成过程

1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,完成.

2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当:

若一组直角三角形有一个锐角相等,可以把其

顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?学生证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

形中,∠A的对边、邻边与斜边的比值,是一个固定值.

通过,使学生自己掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.

而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.

练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.

(四)总结与扩展

1.学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.

教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.

2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.

四、布置作业

本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.

五、板书设计

篇三:《角平分线的性质》

(一)创设情境 导入新课

不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?

如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?

设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

(二)合作交流 探究新知

(活动一)探究角平分仪的原理。具体过程如下:

播放访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其 中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。

设计目的:用生活中的实例感知。以近大事作引入点,以常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。

(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流作心得.

分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

讨论结果展示: 教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:

已知:∠AO B.

求作:∠AOB的平分线.

作法:

(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.

(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.

(3)作射线OC,射线OC即为所求.

设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

议一议:

1.在上面作法的第二步中,去掉“大于 MN的长”这个条件行吗?

2.第二步中所作的两弧交点一定在∠AOB的内部吗?

设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。

学生讨论结果总结:

1.去掉“大于 MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.

2.若分别以M、N为圆心,大于 MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.

3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.

4.这种作法的可行性可以通过全等三角形来证明.

(活动三)探究角平分线的性质

思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。这样的三角形有多少对?

这样设计的目的是加深对全等的认识。

2022初中数学教案设计模板

为了顺利的开展教学工作,老师们在上课前通常会准备教案,那么初中数学的教案该怎么写呢?下面是由我为大家整理的“2022初中数学教案设计模板”,仅供参考,欢迎大家阅读。

2022初中数学教案设计模板(一)

一、 教学目的

1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

2.使学生会列一元一次方程解决一些简单的应用题。

3.会判断一个数是不是某个方程的解。

二、重点、难点

1.重点:会列一元一次方程解决一些简单的应用题。

2.难点:弄清题意,找出“相等关系”。

三、 教学过程

1、复习提问

一本笔记本1.2元。小红有6元钱,那么她多能买到几本这样的笔记本呢?

解:设小红能买到工本笔记本,那么根据题意,得1.2x=6;

因为1.2×5=6,所以小红能买到5本笔记本。

2、新授

问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)

算术法:(328-64)÷44=264÷44=6(辆)

列方程:设需要租用x辆客车,可得:

44x+64=328(1)

解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看?

问题2:在课外活动中,老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

通过分析,列出方程:13+x=(45+x)

问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的“三分之一”改为“二分之一”,那么是多少?动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

3、巩固练习

教科书第3页练习1、2。

4、小结

本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

5、作业

教科书第3页,习题6.1第1、3题。

2022初中数学教案设计模板(二)

一、教学目标:

1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质。

3、弄清一次函数与正比例函数的区别与联系。

4、掌握直线的平移法则简单应用。

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:

重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:

1、一次函数与正比例函数的定义:

一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。

正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2、一次函数与正比例函数的区别与联系:

(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。

基础训练:

1、写出一个图象经过点(1,— 3)的函数解析式为:

2、直线y=—2X—2不经过第 象限,y随x的增大而:

3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:

4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:

5、过点(0,2)且与直线y=3x平行的直线是:

6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1y2,则m的取值范围是:

7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。

8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为 。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

(1)求线段AB的长。

(2)求直线AC的解析式。

2022初中数学教案设计模板(三)

一、教材内容

xx出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。

二、教学目标

1.学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

三、教学重、难点

认识负数的意义。

四、教学过程

(一)谈话交流

谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和现象中都存在着相反的情况,请看屏幕:(课件播放。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

(二)教学新知

1.表示相反意义的量

(1)引入实例

谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。

①六年级上学期转来6人,本学期转走6人。

②张阿姨做生意,二月份盈利1500元,三月份亏损200元。

③与标准体重比,小明重了2.5千克,小华轻了1.8千克。

④一个蓄水池夏季水位上升米,冬季水位下降米。

指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

(2)尝试

怎样用数学方式来表示这些相反意义的量呢?

请同学们选择一例,试着写出表示方法。

(3)展示交流

2.认识正、负数

(1)引入正、负数

谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。

介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

(2)试一试

请你用正、负数来表示出其它几组相反意义的量。

写完后,交流、检查。

3.联系实际,加深认识

(1)说一说存折上的数各表示什么?(教学例2。)

(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

①同桌交流。

②全班交流。根据学生发言板书。

这样的正、负数能写完吗?(板书:……)

强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

4.练一练

读一读,填一填。

5.出示课题

同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

2022初中数学教案设计模板(四)

一、教学目标:

1、理解二元一次方程及二元一次方程的解的概念;

2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

4、在解决问题的过程中,渗透类比的思想方法,并渗透进教育。

二、教学重点、难点:

重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三、教学方法与教学手段:

通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。

四、教学过程:

1、情景导入:

链接:x70岁以上老人可领取生活补助。

得到方程:80a+150b=902880、

2、新课教学:

学生观察方程80a+150b=902880与一元一次方程有异同?

得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。

做一做:

(1)根据题意列出方程:

①小明去看望奶奶,买了5kg苹果和3kg梨共花去23元,分别求苹果和梨的单价、设苹果的单价x元/kg,梨的单价y元/kg;

②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:

(2)课本P80练习2、判定哪些式子是二元一次方程方程。

合作学习:

活动背景爱心满人间——记求是中学“关爱老人”志愿者活动。

问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人、团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等、得出二元一次方程的解的概念:使二元一次方程两边的值相等的'一对未知数的值叫做二元一次方程的一个解。

并提出注意二元一次方程解的书写方法。

3、合作学习:

给定方程x+2y=8,男同学给出y(x取小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换、(比一比哪位同学反应快)请算的快准确的同学讲他的计算方法、提问:给出x的值,计算y的值时,y的系数为多少时,计算y为简便?

出示例题:已知二元一次方程x+2y=8。

(1)用关于y的代数式表示x;

(2)用关于x的代数式表示y;

(3)求当x=2,0,—3时,对应的y的值,并写出方程x+2y=8的三个解。

(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)

4、课堂练习:

(1)已知:5xm—2yn=4是二元一次方程,则m+n=;

(2)二元一次方程2x—y=3中,方程可变形为y=当x=2时,y=;

5、你能解决吗?

小红到邮局给远在农村的寄挂号信,需要邮资3元8角、小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案。

6、课堂小结:

(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

(2)二元一次方程解的不定性和相关性;

(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

7、布置作业:

略。

2022初中数学教案设计模板(五)

教学目标:

1、了解公式的意义,使学生能用公式解决简单的实际问题;

2、初步培养学生观察、分析及概括的能力;

3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议:

一、教学重点、难点

重点:通过具体例子了解公式、应用公式。

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例:

一、教学目标

(一)知识教学点

1、使学生能利用公式解决简单的实际问题。

2、使学生理解公式与代数式的关系。

(二)能力训练点

1、利用数学公式解决实际问题的能力。

2、利用已知的公式推导新公式的能力。

(三)教育渗透点

数学来源于生产实践,又反过来服务于生产实践。

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。

二、学法

1、数学方法:发现法,以复习提问小学里学过的公式为基础、突破难点。

2、学生学法:观察→分析→推导→计算。

三、重点、难点、疑点及解决办法

1、重点:利用旧公式推导出新的图形的计算公式。

2、难点:同重点。

3、疑点:把要求的图形如何分解成已经熟悉的图形的和或。

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。

七、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏。

在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题。

板书:公式

师:小学里学过哪些面积公式?

板书:S=ah

(出示投影1)解释三角形,梯形面积公式。

【教法说明】让学生感知用割补法求图形的面积。