数学三角函数 数学三角函数值
常见三角函数值表是什么?
常见三角函数值指的是常见角度数的三角函数值,表格如下:
数学三角函数 数学三角函数值
数学三角函数 数学三角函数值
扩展资料:
三角函数表发展到今天,经历了许多变迁。
初,三角函数的概念是探索天文现象发现的,三角函数的周期性变化可以在一定程度上从数学的角度,解释天文现象的周期性变化。
三角函数表的早形态,可以追溯到古希腊天文学家托勒密的著作《天文学大成》中记录的“弦表”。
托勒密在制作这张弦表时使用的是半径为60单位的圆的圆心角,并且记录了弦长,因此,正弦函数值的变化也是在圆半径不变的基础上,随着弦长的变化而变化。也就是说,这张弦表也可以视为早的正弦表。
至此,三角函数值多为弦值,直到中亚细亚天文学家阿尔·巴坦尼通过将一根杆直立在地上/墙上通过阴影测量太阳仰角的时候,得出了余切值与正切值。杆立在地上时,阳光在地上投射的影子长度即余切值;杆水平插在墙上时,阳光投射杆在墙面上的影子长度即正切值。
后来,14世纪英国三角学者布拉瓦丁正式将切值引入到了三角计算中去。直到天文学家的学生利提克斯认为当时天文观测的精度需要越来越高,对三角函数值的计算也越来越迫切,便开始着手于包括正弦、正切和正割的三角函数表的制作。直到1956年由他的学生完成并公诸于世。
现在,随着计算机的出现,三角函数值的计算也愈加精密、愈加方便,三角函数表便慢慢消失在我们的视野中了。
参考资料来源:
下面是常见三角函数(正弦、余弦和正切)的值表:
三角函数常见数值表
这是一个基本的三角函数值表,列出了一些常见角度对应的正弦、余弦和正切值。注意,三角函数的输入通常采用弧度制,而不是度数制。上表中的角度以度数和对应的弧度表示。
需要注意的是,在某些特殊情况下,例如90度、270度等,正切函数的值不被定义。这是因为正切函数在这些角度上的值会趋向于无穷大。
常见的三角函数值表是什么呢?三角函数是数学中非常重要的一个部分,而三角函数值表则是三角函数的重要工具之一。下面,我们就来看看常见的三角函数值表:
1. 角度值表
角度值表是三角函数值表中为常见的一种,它包括了三角函数各个角度的值。比如,对于锐角三角函数,角度值表中的值包括90度、45度、27.5度、20度、14.3度、11度、8度、6度、5度、4度、3度、2度、1度等。
2. 边长值表
边长值表是三角函数值表中第二常见的一种,它包括了三角函数各个边长的值。比如,对于正弦函数,边长值表中的值包括长度为1的直线上的两个点、长度为零的直线上的两个点、长度为无穷大的直线上的两个点等。
3. 角度和边长关系表
角度和边长关系表是三角函数值表中第三常见的一种,它包括了三角函数各个角度和边长的关系。比如,对于余弦函数,角度和边长关系表中的值包括角度为30度时的边长、角度为45度时的边长、角度为60度时的边长等。
总之,三角函数值表是三角函数的重要工具之一,它对于三角函数的计算和应用都有非常重要的意义。如果你对三角函数值表感兴趣,可以随时查阅相关资料和书籍。
常见三角函数值表是一个表格,列出了经典的三角函数(正弦、余弦和正切)在特定角度下的数值。以下是一个简化的三角函数值表:
角度(度) | 正弦值 | 余弦值 | 正切值
--------------------------------
0 | 0 | 1 | 0
30 | 1/2 | √3 / 2 | √3 / 3
45 | √2 / 2 | √2 / 2 | 1
60 | √3 / 2 | 1/2 | √3
90 | 1 | 0 | 无穷大
对于其他角度,可以通过计算或使用三角函数计算器来获得相应的数值。这个表格只列出了一些常见角度的数值,但实际上三角函数是连续的,可以在整个角度范围内使用。需要注意的是,角度通常用度数表示,但在一些情况下也可以使用弧度表示。
此外,三角函数还有反函数,即反正弦、反余弦和反正切,在特定数值下可以计算得到对应的角度。这些函数的计算通常需要使用计算器或数学软件。
常见三角函数值表是一张记录了常用角度的正弦、余弦、正切以及它们的倒数的数值表格。以下是一个常见的角度值表格(度数为角度制):
角度(度) 正弦值 余弦值 正切值
0° 0 1 0
30° 1/2 √3/2 1/√3
45° 1/√2 1/√2 1
60° √3/2 1/2 √3
90° 1 0 ∞
该表格显示了0°、30°、45°、60°和90°这几个常见角度的正弦、余弦和正切值。注意,90°的正切值为无穷大。倒数可以通过求倒数得到(倒数不显示在表格中)。对于其他角度,可以使用三角函数的特性或计算器来计算其数值。
常见三角函数值表如下:
角度(度) 0° 30° 45° 60° 90°
正弦值 0 1/2 √2/2 √3/2 1
余弦值 1 √3/2 √2/2 1/2 0
正切值 0 √3/3 1 √3 无穷大
高中数学三角函数公式是什么?
高中数学三角函数公式如下:
1、两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
2、倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
3、半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
三角函数:
三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的与一个比值的的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。
其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
什么是三角函数
什么是三角函数?
在数学中,三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
三角函数在数学中属于初等函数里的超越函数的一类函数。它们本质上是任意角的 与一个比值的 的变量之间的映射。由于三角函数具有周期性,所以并不具有单射函数(亦称为单调函数)意义上的反函数。三角函数在复数中有重要的应用,在物理学中也是常用的工具。
三角函数一般用于计算三角形(通常为直角三角形)中未知长度的边和未知的角度,在导航系统,工程学以及物理学方面都有广泛的用途。 其在基本物理中的一个常见用途是将矢量转换到笛卡尔坐标系中。现代比较常用的三角函数有6个,其中Sin和Cos还常用于模拟周期函数现象,比如说声波和光波,谐振子的位置和速度,光照强度和白昼长度,过去一年中的平均气温变化等等。
呵呵,其实是wiki上的东东,wiki是个好东东哦!
三角函数是什么意思
三角函数是基本初等函数之一。
是以角度(数学上常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
扩展资料:
三角函数的起源:
早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。
喜帕恰斯实际上给出了早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。
古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。
在数学中,三角函数是什么?
在直角三角形ABC种,a,b代表直角边,c代表斜边。
以角A为例,于是就有:
(1)sinA:表示正弦。角A所对的边与斜边的比值,sinA=a/c。
(2)cosA:表示余弦。角A相邻的直边与斜边的比值,cosA=b/c。
(3)tanA:表示正切。角A所对的边与相邻的直边比值, tanA=a/b。
正弦 (sine), 余弦 (cosine) 和 正切 (tangent) (英语符号简写为 sin, cos 和 tan) 是 直角三角形边长的比,如下图所示:
三角函数
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫作双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
三角函数是什么啊?
三角函数是基本初等函数之一,是以角度(数学上常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
三角函数
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
以上内容参考:
数学三角函数公式是什么?
数学三角函数公式是如下:
1、sin2α=2sinαcosα。
2、tan2α=2tanα/(1-tan^2(α))。
3、cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 。
4、sin^2(α/2)=(1-cosα)/2。
5、cos^2(α/2)=(1+cosα)/2。
6、tan^2(α/2)=(1-cosα)/(1+cosα)。
7、tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα。
8、二倍角公式通过角α的三角函数值的一些变换关系来表示其二倍角2α的三角函数值,二倍角公式包括正弦二倍角公式、余弦二倍角公式以及正切二倍角公式。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。