人工神经网络算法概述_人工神经网络实例
人工神经网络(ANN)
人工神经网络,也就是ANN(Artificial Neural Network),它是模拟人类大脑处理信息的生物神经网络所产生出来的一种计算模型。而它主要用于机器学习的研究与调用,例如语音识别,计算机图像处理,NLP等。
人工神经网络算法概述_人工神经网络实例
人工神经网络算法概述_人工神经网络实例
人工神经网络算法概述_人工神经网络实例
人工神经网络概述(更新中)
智能: 从感觉到记忆再到思维的过程称为“智慧”,智慧的结果是语言和行为。行为和语言予以表达称为“能力”。智慧和能力的总称为“智能”。感觉、记忆、思维、行为、语言的过程称为“智能过程”。
人工智能: 人工构建的智能系统。
人工智能是研究和开发用于模拟、延伸和扩展人类智能的理论、方法、技术及应用的技术学科,其主要研究内容可以归纳为以下四个方面。
人工神经网络是基于生物神经元网络机制提出的一种计算结构,是生物神经网络的某种模拟、简化和抽象。神经元是这一网络的“”,即“处理单元”。
人工神经网络可用于逼近非线性映射、分类识别、优化计算以及知识挖掘。近年来,人工神经网络在模式识别、信号处理、控制工程和优化计算领域得到了广泛的应用。
M-P模型由心理学家McCulloch和数学家W. Pitts在1943年提出。
M-P模型结构是一个多输入、单输出的非线性元件。其I/O关系可推述为
其中, 表示从其他神经元传来的输入信号; 表示从神经元 到神经元 的连接权值; 表示阈值; 表示激励函数或转移函数; 表示神经元 的输出信号。
作为一种基本的神经元数学模型,M-P模型包括了加权、求和和激励(转移)三部分功能。
神经元的数据模型主要区别于采用了不同的激励函数。
概率型函数的输入和输出之间的关系是不确定的。分布律如下
其中, 被称为温度参数。
感知机(Perceptron)是美国学者Rosenblatt于1957年提出的一种用于模式分类的神经网络模型。
M-P模型通常叫做单输出的感知机。按照M-P模型的要求,该人工神经元的激活函数为阶跃函数。为了方便表示,M-P模型表示为下图所示的结构。
用多个这样的单输入感知机可以构成一个多输出的感知机,其结构如下
对于二维平面,当输入/输出为 线性可分 时,一定可以找到一条直线将模式分成两类。此时感知机的结构图3所示,显然通过调整感知机的权值及阈值可以修改两类模式的分界线:
线性可分: 这里的线性可分是指两类样本可以用直线、平面或超平面分开,否则称为线性不可分。
感知机的基本功能是对外部信号进行感知和识别,这就是当外部 个信号或来自其它 个神经元(的信号)处于一定的状态时,感知机就处于兴奋状态,而外部 个信号或 个神经元的输出处于另一个状态时,感知机就呈现抑制状态。
如果 、 是 中两个互不相交的,且有如下方程成立
则称 为感知机的 学习目标 。根据感知机模型,学习算法实际上是要寻找权重 、 满足下述要求:
感知机的训练过程是感知机权值的逐步调整过程,为此,用 表示每一次调整的序号。 对应于学习开始前的初始状态,此时对应的权值为初始化值。
人工神经网络(ANN)简述
我们从下面四点认识人工神经网络(ANN: Artificial Neutral Network):神经元结构、神经元的激活函数、神经网络拓扑结构、神经网络选择权值和学习算法。
1. 神经元:
我们先来看一组对比图就能了解是怎样从生物神经元建模为人工神经元。
下面分别讲述:
生物神经元的组成包括细胞体、树突、轴突、突触。树突可以看作输入端,接收从其他细胞传递过来的电信号;轴突可以看作输出端,传递电荷给其他细胞;突触可以看作I/O接口,连接神经元,单个神经元可以和上千个神经元连接。细胞体内有膜电位,从外界传递过来的电流使膜电位发生变化,并且不断累加,当膜电位升高到超过一个阈值时,神经元被激活,产生一个脉冲,传递到下一个神经元。
为了更形象理解神经元传递信号过程,把一个神经元比作一个水桶。水桶下侧连着多根水管(树突),水管既可以把桶里的水排出去(抑制性),又可以将其他水桶的水输进来(兴奋性),水管的粗细不同,对桶中水的影响程度不同(权重),水管对水桶水位(膜电位)的改变就是水桶内水位的改变,当桶中水达到一定高度时,就能通过另一条管道(轴突)排出去。
按照这个原理,科学家提出了M-P模型(取自两个提出者的姓名首字母),M-P模型是对生物神经元的建模,作为人工神经网络中的一个神经元。
由MP模型的示意图,我们可以看到与生物神经元的相似之处,x_i表示多个输入,W_ij表示每个输入的权值,其正负模拟了生物神经元中突出的兴奋和抑制;sigma表示将全部输入信号进行累加整合,f为激活函数,O为输出。下图可以看到生物神经元和MP模型的类比:
往后诞生的各种神经元模型都是由MP模型演变过来。
2. 激活函数
激活函数可以看作滤波器,接收外界各种各样的信号,通过调整函数,输出期望值。ANN通常采用三类激活函数:阈值函数、分段函数、双极性连续函数(sigmoid,tanh):
3. 学习算法
神经网络的学习也称为训练,通过神经网络所在环境的作用调整神经网络的自由参数(如连接权值),使神经网络以一种新的方式对外部环境做出反应的一个过程。每个神经网络都有一个激活函数y=f(x),训练过程就是通过给定的海量x数据和y数据,拟合出激活函数f。学习过程分为有导师学习和无导师学习,有导师学习是给定期望输出,通过对权值的调整使实际输出逼近期望输出;无导师学习给定表示方法质量的测量尺度,根据该尺度来优化参数。常见的有Hebb学习、纠错学习、基于记忆学习、随机学习、竞争学习。
4. 神经网络拓扑结构
常见的拓扑结构有单层前向网络、多层前向网络、反馈网络,随机神经网络、竞争神经网络。
5. 神经网络的发展
(不能贴公式不好解释啊 -_-!)sigma是误信号,yita是学习率,net是输入之和,V是输入层到隐含层的权重矩阵,W是隐含层到输出层的权重矩阵。
之后还有几种
随着计算机硬件计算能力越来越强,用来训练的数据越来越多,神经网络变得越来越复杂。在人工智能领域常听到DNN(深度神经网络)、(卷积神经网络)、RNN(递归神经网络)。其中,DNN是总称,指层数非常多的网络,通常有二十几层,具体可以是或RNN等网络结构。
参考资料 :
人工神经网络的知识表示形式和推理机制
神经网络有多种分类方式,例如,按网络性能可分为连续型与离散型网络,确定型与随机型网络:按网络拓扑结构可分为前向神经网络与反馈神经网络。本章土要前向神经网络、反馈神经网络和自组织特征映射神经网络。
前向神经网络是数据挖掘中广为应用的一种网络,其原理或算法也是很多神经网络模型的基础。径向基函数神经网络就是一种前向型神经网络。Hopfield神经网络是反馈网络的代表。Hvpfi}ld网络的原型是一个非线性动力学系统,目前,已经在联想记忆和优化计算中得到成功应用。
基本特征
非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。
一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。
以上内容参考:
什么是人工神经网络及其算法实现方式
人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的(或称神经元)之间相互联接构成。每个代表一种特定的输出函数,称为激励函数(activation function)。每两个间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。