光调制器的基本原理

光调制器、光源、光电探测器和光放大器是光有源器件的四种重要类型,其中光调制器是告诉、长距离光通信的关键器件,也是最重要的集成光学器件之一。光发射机的功能是把输入电信号转换成光信号,并用耦合技术把光信号限度地注入光纤线路,其中把电信号转换为光信号的过程就是光调制。调制后的光波经过光纤道送到接收端,由光接收机鉴别出它的变化,再恢复原来的信息,这个过程就是光调解。

空间光束调制器的意义 空间光束调制器的意义是空间光束调制器的意义 空间光束调制器的意义是


空间光束调制器的意义 空间光束调制器的意义是


调制器的作用

调制器的功能是把信号源,可以是数字电视机顶盒、卫星数字电视接收机、电信机顶盒。电脑、、电视解调器等,所提供的视频信号和音频信号调制成稳定的高频射频振荡信号,视频为调幅调制方式,音频为调频调制方式。

调制器的特点:

1、邻频调制器采用四路调制一体设计,节省机房机柜空间,方便安装调试。

2、输出信号强,传输距离远,输出图像优化处理,使得画面更清晰。

3、邻频调制器采用中频声表面滤波,标准残留边带特性。

4、采用频率,保证输出电视频道的频率稳定度。

5、标准音视频输入,音视频调制度可调,解决图像过暗或发白的情况。

什么是光电调制器

当给晶体或液体加上电场后,该晶体或液体的折射率发生变化,这种现象称为电光效应。电光效应在工程技术和科学研究中有许多重要应用,它有很短的响应时间,可以在高速摄影中用做快门或在光速测量中用做光束斩波器等。在激光出现以后,电光效应的研究和应用得到迅速发展,电光器件被广泛应用在激光通信、激光测距、激光显示和光学数据处理等方面。本文提出的电光调制系统就是基于晶体的电光效应验证电光调制原理。1电光调制原理电光调制是利用某些晶体材料在外加电场作用下折射率发生变化的电光效应而进行工作的。根据加在晶体上电场的方向与光束在晶体中传播的方向不同,可分为纵向调制和横向调制。电场方向与光的传播方向平行,称为纵向电光调制;电场方向与光的传播方向垂直,称为横向电光调制。横向电光调制的优点是半波电压低、驱动功率小,应用较为广泛。本电光调制系统是以铌酸锂晶体的横向调制为例。图1是一种横向电光调制的示意图。沿z方向加电场,通光方向沿感应主轴y′方向,经起偏器后光的振动方向与z轴的夹角为45°。光进入晶体后,将分解为沿x′和z方向振动的两个分量,两者之间的折射率之为。定通光方向上晶体长度为l,厚度为d(即两极间的距离),则外加电压为V=Ezd时,从晶体出射的两束光的相位为:由式(1)可以看出,只要晶体和通光波长λ确定之后,相位△φ的大小取决于外加电压V,改变外加电压V就能使相位△φ随电压V成比例变化。通常使用的电光晶体的主要特性之一是采用半波电压米表征(当两光波间的相位△φ为π弧度时所需要的外加电压称为半波电压)。2电光调制系统总体设计基于电光调制原理设计出此电光调制系统,用以研究电场和光场相互作用的物理过程,也适用于光通信与物理的实验研究。电光调制系统结构见图2。2.1工作原理激光器电源供给激光器正常工作的电压,确保激光器稳定工作。由激光器产生的激光经起偏器后成线偏振光。线偏振光通过电光晶体的同时,给电光晶体外加一个电压,此电压就是需要调制的信号。当给电光晶体加上电压后,晶体的折射率及其光学性能发生变化,改变了光波的偏振状态,线偏振光变成了椭圆偏振光。为了选择合适的调制工作点,在电光晶体之后插入一个λ/4波片,使通过电光晶体的两束光线的相位延迟π/2,使调制器工作在线性部分,通过检偏器检测输出光的偏振方向,用光电探测器检测调制后的光信号,并将其转换为电信号用示波器观察。2.2激光器和激光器电源此系统中,激光器使用氦氖激光器。氦氖激光管是一种特殊的气体放电光源,与其他光源相比,它具有极好的单色性、高度的相干性和很强的方向性(发散角很小),激光器电源首先将220V输入电压通过变压器升到1000V,再将该电压通过倍压电路提升到约5000V,然后通过限流电阻直接给激光管供电。当电源开关刚打开时,激光管中气体还没有电离,内阻相当于无穷大,此时电源输出约5000V高压,这就是激光管的点火电压,使得激光管中的气体电离,激光管开始工作,这时激光管的电阻将会大大下降。也就是说,负载电流上升,激光器的电源输出电压也会下降。2.3锂酸铌电光晶体铌酸锂晶体具有优良的压电、电光、声光、非线性等性能。本系统中采用LN电光晶体。LN晶体是三方晶体,n1=n2=no,n3=ne。没有加电场之前,LN的折射率椭球为:本系统中采用y轴通光、z轴加电场,也就是说,E1=E2=0,E3=E。那么,加上电场后折射率椭球为:式(4)表明,LN晶体沿z轴方向加电场后,可以产生横向电光效应,但是不能产生纵向电光效应。经过晶体后,o光和e光产生的相位为:2.4信号源信号源系统结构如图3所示。信号源是为了给电光晶体提供调制电压以及使系统能够接入音频信号。电源部分可以同时输出几路直流稳压电源给信号源的各个模块同时供电;信号发生模块产生频率和幅度都连续可调的正弦波与方波;功率放大模块将输入的正弦波与方波以及音频信号放大到几十伏,然后加到电光晶体上调制通过电光晶体的激光;解调模块对从探测器输入的微弱信号进行解调放大,对输入的微弱音频信号驱动放大后通过音箱把声音放出来;偏置高压模块产生幅度连续可调的直流高压,以代替λ/4波片作为调制晶体的半波电压。3电光调制在光通信中的应用本系统是用光波传递声音信息,由激光器产生的激光经起偏器后成为线偏振光,再经过λ/4波片变成圆偏振光,使得2个偏振分量(o光和e光)在进入电光晶体之前产生π/2的相位,使调制器工作在近似线性区域。在激光通过电光晶体的同时,给电光晶体加一个外加电压,此电压是需要传输的声音信号。当给电光晶体加上电压后,晶体的折射率及其他光学性能发生变化,改变了光波的偏振状态,因此,圆偏振光变成椭圆偏振光,再经检偏器又成为线偏振光,光强被调制。此时的光波载有声音信息并在自由空间传播,在接收地用光电探测器接收被调制的光信号,然后进行电路转换,将光信号转换成电信号,用解调器将声音信号还原,最终完成声音信号的光传输。外加电压为被传输的声音信号,此信号可以是收录机的输出或磁带机输出,实际上就是一个随时间变化的电压信号。4结束语通过以上电光调制系统验证电光调制技术进行激光通信是可行的,而且此种通信方法传输速度快,抗干扰能力强,保密性好,结构简单,成本低廉,易于实现。

DMD空间光调制器与SLM液晶空间光调制器原理与应用、区别

液晶空间光调制器调制的性能和精度完全由相关材料的属性决定。现有大部分空间光调制器采用液晶材料,在调制精度上一般量化为8bit(实际精度可能更低),刷新速度为60Hz。这类空间光调制器一般仅能够对波前的幅度进行调制或者对入射光波前的相位进行调制,现有商品化的产品尚无法在同一空间光调制器上实现的幅度和相位调制。因此现有商品化空间光调制器存在速度慢、精度低、幅度和相位无法调制、承载光强较低等问题。

DMD空间光调制器采用TI公司的DLP系列中的数字微镜(DMD)器件作为核心的空间光调制器件,再次在此基础上配合以4f系统所构成的低通空间光滤波器实现对不同空间位置和频率成分的“混合”,由此可以的对空间光波前的幅度和相位进行调制。而调制的精度由低通滤波器的截止频率即通带宽度所决定。

DMD特点与优势

高精度空间光调制

DMD对于空间光幅度和相位的调制精度可以根据应用需求进行设定。可以设置为精度的二元调制或者非常高精度的10bit或16bit量化调制。因此只需通过简单的软件和硬件设置,可以实现不同的调制精度要求。

高达15kHz帧率的高速调制数据加载

由于采用DMD器件作为核心电控光学元件,因此调制数据加载的速度有DMD器件的数据更新速度,典型的帧率可以达到15kHz,远远大于现有空间光调制器产品的数据加载速度。

高达10W量级的高光功率耐受

DMD采用的调制原理并不依赖液晶等材料,因此可以耐受高达10w量级的光输入功率。

更加广域的波段适用范围

覆盖了可见光谱段,通过对DMD器件的镀膜处理可以使之适应极紫外和远的谱段空间光的处理能力瞬渺科技。

一台设备同时实现幅度相位的调制

利用DMD可以同时实现空间光波前幅度和相位的同时调制,幅度和相位的调制两者为设置,将极大的降低光学系统的复杂度。

空间光调制器可以将光调制成三维吗

可以。空间光调制器本来就是三维的,所以可以调制成三维。空间光调制器是指在主动控制下,它可以通过液晶分子调制光场的某个参量,例如通过调制光场的振幅,通过折射率调制相位。

空间光调制器为什么要用水平偏振光

是相位型液晶光阀在制作时会确定液晶的配向角,即液晶分子的长轴指向,当线偏振光沿液晶分子长轴方向传播时不发生双折射现象,这时改变加载在液晶分子上的电压,就会改变液晶折射率从而改变光程,达到相位调制的目的。