对数公式与指数公式_对数和指数函数公式
对数和指数的公式?
如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.
对数公式与指数公式_对数和指数函数公式
对数公式与指数公式_对数和指数函数公式
由定义知:
①负数和零没有对数;
②a>0且a≠1,N>0;
③loga1=0,logaa=1,alogaN=N,logaab=b.
特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.
2对数式与指数式的互化
指数函数与对数函数的转换公式
设指数函数为y=a^x
两边取以a为底的对数,变为:log(a)y=x
同底时,指数函数与对数函数互为反函数
(1+n)^7=10
1+n=10^(1/7)
n=10^(1/7)-1
这是指数函数的运算
设指数函数为y=a^x
则转换成对数函数是y=loga(x)
指数函数合和他相应的对数函数应该是互为反函数
(1+n)^7=10
可求得n=log7(10)-1
7ln(1+n)=ln10
ln(1+n)=(ln10)/7
1+n=e^(ln10)/7
n=e^(ln10)/7-1
对数和指数的转换公式是什么?
公式如下:
对数函数的一般形式为 y=logax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y,因此指数函数里对于a存在规定——a>0且a≠1,对于不同大小a会形成不同的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0 对数的应用: 对数在数学内外有许多应用,这些中的一些与尺度不变性的概念有关,例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放,这引起了对数螺旋,Benford关于领先数字分配的定律也可以通过尺度不变性来解释,对数也与自相似性相关。 对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题,自相似几何形状的尺寸,即其部分类似于整体图像的形状也基于对数,对数刻度对于量化与其异相反的值的相对变化是有用的。 指数和对数的转换公式是:a^y=xy=log(a)(x)。 对数函数的一般形式为 y=logax,它实际上就是指数函数的反函数,图象关于直线y=x对称的两函数互为反函数,可表示为x=a^y。指数和对数的转换公式
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。