如何解一元二次方程?

∴x1=-3,x2=1

解一元二次方程的方法有:整理为:(x-)2=

如何解一元二次方程 如何解一元二次方程应用题如何解一元二次方程 如何解一元二次方程应用题


如何解一元二次方程 如何解一元二次方程应用题


1. 配方法:将一元二次方程配成$(x + m)^2 = n$的形式,再利用直接方法求解。

2. 公式法:用求根公式直接求解,公式为$x = frac{- b pm sqrt{b^2 - 4ac}}{2a}$。

3. 因式分解法:将原方程因式分解为$mx + nx + k = 0$的形式,再由方程$k$的一次函数找出$x$的值。

4. 直接方法:适用于某些特殊的方程,如$ax^2 = b$的形式,可直接方求解。

5. 代数法:适用于所有一元二次方程,将方程化简为一般形式,再利用求根公式求解。

6. 图像法:将方程的根表示为两个数$x_1$和$x_2$,然后画出抛物线图像,找到抛物线与x轴交点的横坐标,即为方程的解。

以上方法可以用来解一元二次方程,具体方法需要根据具体方程情况选择。

怎样解一元二次方程

(1)解:(x+3)(x-6)=-8 化简整理得

解一元二次方程的方法有三种,分别是公式法、配方法和因式分解法。

2.解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接方法和因式分解法,再考虑用公式法.

1、公式法:

一元二次方程的一般形式为ax^2+bx+c=0,当b^2-4ac≥0时,方程有两个实数根x1和x2,可以使用公式x1=(-b+√(b^2-4ac))/2a和x2=(-b-√(b^2-4ac))/2a来求解。

2、配方法:

将一元二次方程化为(x+m)^2=n的形式,再求解。

3、因式分解法:

将方程的右边化为0,再将左边分解因式,利用积木原理即可得到两个一次因式的积的值,观察到一次因式的值,只有一对是负数,其余三对是正数时,这时却得到了四个一次因式的积的值。

例如,求解方程6x^2-13x+6=0。

解得:[x:3/2,x:2/3]。

解一元二次方程的便捷之处:

1、直接方法:对于没有一次项的一元二次方程,通过移项等的变形可以转化为左边平方,右边数(或者两边都是平方的形式),即可用此方法。这种方法不需要进行复杂的计算,能够直接得出解。

2、配方法:虽然需要一些计算,但配方法能够将一元二次方程转化为更容易解的形式,通过配方的方法化成左边平方右边数,再直接方。这种方法能够快速得出解,并且不容易出错。

3、因式分解法:如果方程的系数较为特殊,可以使用因式分解法来解方程。通过因式分解,可以将方程的右边化为0,从而得出解。这种方法在一些特定情况下非常高效,能够快速准确地解决一些复杂的一元二次方程。

4、解一元二次方程的便捷之处还包括它们的可重复性和可验证性。使用上述方法求解一元二次方程时,可以通过代入原方程来验证所得解是否正确。这种方法能够确保计算的准确性和可信度,避免了一些不必要的错误和疑虑。

解一元二次方程的四种方法

原方程的解。 原方程的解。

解一元二次方程的四种方法如下:

小结:

1、因式分解法:如果方程可以因式分解成两个一次因式的乘积,则可通过将每个一次因式分别置零求解得到方程的解。

2、完全平方公式法:对一个二次三项式,可以利用完全平方公式,将其表示为一个平方项加上一个常数项,然后整理可得到方程的标准形式,并求解。

3、配方法:当不能直接使用因式分解法时,可以通过配方法将一元二次方程转化为一个完全平方式或者去掉一次项。通常配方法需要进行某些代数性质变形来达到目的。

4、公式法:使用求根公式x={-b±√(b^2-4ac)}/(2a),来求解二次方程,其中 a,b,c 分别为二次、一次和常数项系数。但需要注意这个公式只适用于满足b^2-4ac>0的情况下。

一元二次方程的应用:

1、求解根的个数:通过根的判别式可以判断一元二次方程实数根的个数,进而求出方程的解。

2、求解根的公式:通过配方法或公式法可以求出一元二次方程的解,对于一些比较简单的方程,也可以直接观察求解。

3、根与系数的关系:在一元二次方程中,两根的和等于一次项系数除以二次项系数的相反数,两根的积等于常数项除以二次项系数。

4、根的判别式:通过根的判别式可以判断方程解的情况,包括无解、有一个解和有两个解。

一元二次方程怎么解?

(4)解方程求出题中未知数的值;

简单啊比如ax平方+bx+c=0 解就是x1=(-b加减根号b平方减4ac除以2a)

一般形式

ax^2+bx+c=0(a、b、c为常数,a≠0)

例:x2-1=0

一般解法

1.直接方法

2.配方法

3.公式法

4.分解因式法

判别方法

一元二次方程的判断式:b^2-4ac

b^2-4ac>0 方程有两个不相等的实数根.

b^2-4ac=0 方程有两个相等的实数根.

b^2-4ac<0 方程没有实数根.

上述由左边可推出右边,反过来也可由右边推出左边.

列一元二次方程解题的步骤

(1)分析题意,找到题中未知数和题给条件的相等关系;

(2)设未知数,并用所设的未知数的代数式表示其余的未知数;

(3)找出相等关系,并用它列出方程;

(5)检验所求的答数是否符合题意,并做答.

解题思想

1.转化思想 0

转化思想是初中数学最常见的一种思想方法.

利用转化的思想可将未知数的问题转化为已知的问题,将复杂的问题转化为简单的问题.在本章中,将解一元二次方程转化为求平方根问题,将二次方程利用因式分解转化为一次方程等.

2.从特殊到一般的思想

从特殊到一般是我们认识世界的普遍规律,通过对特殊现象的研究得出一般结论,如从用直接方法解特殊的问题到配方法到公式法,再如探索一元二次方程根与系数的关系等.

3.分类讨论的思想

一元二次方程根的判别式体现了分类讨论的思想.

4.换元法,将方程中某个整式或分式设为一个字母代入计算,使过程简便.

经典例题精讲

1.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.

3.一元二次方程 (a≠0)的根的判别式正反都成立.利用其可以(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.

4.一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.

韦达定理

韦达定理(Weda's Theorem): 一元二次方程ax^2+bx+c (a不为0)中

设两个根为X1和X2

则X1+X2= -b/a

X1X2=c/a

韦达定理在更高次方程中也是可以使用的。一般的,对一个n次方程∑AiX^i=0

它的根记作X1,X2…,Xn

我们有

∑Xi=(-1)^1A(n-1)/A(n)

∑XiXj=(-1)^2A(n-2)/A(n)

…∏Xi=(-1)^nA(0)/A(n)

其中∑是求和,∏是求积。

特别注意

当一个一元二次方程不可以一次求出时,应该先改变成一般形式,然后开方,得出来的数一定有两个或者没有

ax^2+bx+c=0

x1,2=(-b±√(b^2-4ac)/2a

一元二次方程的解法

一、知识要点:

一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基

础,应引起同学们的重视。

一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的次数是2

的整式方程。

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解

法:1、直接方法;2、配方法;3、公式法;4、因式分解法。

二、方法、例题精讲:

1、直接方法:

直接方法就是用直接方求解一元二次方程的方法。用直接方法解形如(x-m)2=n (n≥0)的

方程,其解为x=m± .

例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11

分析:(1)此方程显然用直接方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以

此方程也可用直接方法解。

(1)解:(3x+1)2=7×

∴(3x+1)2=5

∴3x+1=±(注意不要丢解)

∴x=

∴原方程的解为x1=,x2=

(2)解: 9x2-24x+16=11

∴(3x-4)2=11

∴3x-4=±

∴x=

∴原方程的解为x1=,x2=

2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)

先将常数c移到方程右边:ax2+bx=-c

将二次项系数化为1:x2+x=-

方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2

方程左边成为一个完全平方式:(x+ )2=

当b2-4ac≥0时,x+ =±

∴x=(这就是求根公式)

例2.用配方法解方程 3x2-4x-2=0

解:将常数项移到方程右边 3x2-4x=2

将二次项系数化为1:x2-x=

方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2

配方:(x-)2=

直接方得:x-=±

∴x=

3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项

系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

例3.用公式法解方程 2x2-8x=-5

解:将方程化为一般形式:2x2-8x+5=0

∴a=2, b=-8, c=5

b2-4ac=(-8)2-4×2×5=64-40=24>0

∴x= = =

4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让

两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个

根。这种解一元二次方程的方法叫做因式分解法。

例4.用因式分解法解下列方程:

(1) (x+3)(x-6)=-8 (2) 2x2+3x=0

(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)

x2-3x-10=0 (方程左边为二次三项式,右边为零)

(x-5)(x+2)=0 (方程左边分解因式)

∴x-5=0或x+2=0 (转化成两个一元一次方程)

∴x1=5,x2=-2是原方程的解。

(2)解:2x2+3x=0

x(2x+3)=0 (用提公因式法将方程左边分解因式)

∴x=0或2x+3=0 (转化成两个一元一次方程)

∴x1=0,x2=-是原方程的解。

注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。

(3)解:6x2+5x-50=0

(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)

∴2x-5=0或3x+10=0

∴x1=, x2=- 是原方程的解。

(4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)

(x-2)(x-2 )=0

∴x1=2 ,x2=2是原方程的解。

一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般

形式,同时应使二次项系数化为正数。

直接方法是最基本的方法。

公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为法),在使用公式

法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程

是否有解。

配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法

解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方

法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。

例5.用适当的方法解下列方程。(选学)

(1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0

(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0

分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算。观察后发现,方程左边可用平方

公式分解因式,化成两个一次因式的乘积。

(2)可用十字相乘法将方程左边因式分解。

(3)化成一般形式后利用公式法解。

(4)把方程变形为 4x2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解。

(1)解:4(x+2)2-9(x-3)2=0

[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0

(5x-5)(-x+13)=0

5x-5=0或-x+13=0

∴x1=1,x2=13

(2)解: x2+(2- )x+ -3=0

[x-(-3)](x-1)=0

x-(-3)=0或x-1=0

(3)解:x2-2 x=-

x2-2 x+ =0 (先化成一般形式)

△=(-2 )2-4 ×=12-8=4>0

∴x=

∴x1=,x2=

(4)解:4x2-4mx-10x+m2+5m+6=0

4x2-2(2m+5)x+(m+2)(m+3)=0

[2x-(m+2)][2x-(m+3)]=0

2x-(m+2)=0或2x-(m+3)=0

∴x1= ,x2=

例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。 (选学)

分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我

们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方

法)

解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0

即 (5x-5)(2x-3)=0

∴5(x-1)(2x-3)=0

(x-1)(2x-3)=0

∴x-1=0或2x-3=0

∴x1=1,x2=是原方程的解。

例7.用配方法解关于x的一元二次方程x2+px+q=0

解:x2+px+q=0可变形为

x2+px=-q (常数项移到方程右边)

x2+px+( )2=-q+()2 (方程两边都加上一次项系数一半的平方)

(x+)2= (配方)

当p2-4q≥0时,≥0(必须对p2-4q进行分类讨论)

∴x=- ±=

∴x1= ,x2=

当p2-4q<0时,<0此时原方程无实根。

说明:本题是含有字母系数的方程,题目中对p, q没有附加条∴原方程的解为x1=,x2= .件,因此在解题过程中应随时注意对字母

取值的要求,必要时进行分类讨论。

练习:

(一)用适当的方法解下列方程:

1. 6x2-x-2=0 2. (x+5)(x-5)=3

3. x2-x=0 4. x2-4x+4=0

5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0

(二)解下列关于x的方程

1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0

练习参:

(一)1.x1=- ,x2= 2.x1=2,x2=-2

3.x1=0,x2= 4.x1=x2=2 5.x1=x2=

6.解:(把2x+3看作一个整体,将方程左边分解因式)

[(2x+3)+6][(2x+3)-1]=0

即 (2x+9)(2x+2)=0

∴2x+9=0或2x+2=0

∴x1=-,x2=-1是原方程的解。

(二)1.解:x2-ax+( +b)( -b)=0 2、解:x2-(+ )ax+ a· a=0

[x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0

∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0

∴x1= +b,x2= -b是 ∴x1= a,x2=a是

测试

选择题

1.方程x(x-5)=5(x-5)的根是( )

A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5

2.多项式a2+4a-10的值等于11,则a的值为( )。

A、3或7 B、-3或7 C、3或-7 D、-3或-7

3.若一元二次方程ax2+bx+c=0中的二次项系数,一次项系数和常数项之和等于零,那么方程必有一个

根是( )。

A、0 B、1 C、-1 D、±1

4. 一元二次方程ax2+bx+c=0有一个根是零的条件为( )。

A、b≠0且c=0 B、b=0且c≠0

C、b=0且c=0 D、c=0

5. 方程x2-3x=10的两个根是( )。

A、-2,5 B、2,-5 C、2,5 D、-2,-5

6. 方程x2-3x+3=0的解是( )。

A、 B、 C、 D、无实根

7. 方程2x2-0.15=0的解是( )。

A、x= B、x=-

C、x1=0.27, x2=-0.27 D、x1=, x2=-

8. 方程x2-x-4=0左边配成一个完全平方式后,所得的方程是( )。

A、(x-)2= B、(x- )2=-

C、(x- )2= D、以上都不对

9. 已知一元二次方程x2-2x-m=0,用配方法解该方程配方后的方程是( )。

A、(x-1)2=m2+1 B、(x-1)2=m-1 C、(x-1)2=1-m D、(x-1)2=m+1

与解析

:1.C 2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D

解析:

1.分析:移项得:(x-5)2=0,则x1=x2=5,

注意:方程两边不要轻易除以一个整式,另外一元二次方程有实数根,一定是两个。

2.分析:依题意得:a2+4a-10=11, 解得 a=3或a=-7.

3.分析:依题意:有a+b+c=0, 方程左侧为a+b+c, 且具x=1时, ax2+bx+c=a+b+c,意味着当x=1

时,方程成立,则必有根为x=1。

4.分析:一元二次方程 ax2+bx+c=0若有一个根为零,

则ax2+bx+c必存在因式x,则有且c=0时,存在公因式x,所以 c=0.

另外,还可以将x=0代入,得c=0,更简单!

5.分析:原方程变为 x2-3x-10=0,

则(x-5)(x+2)=0

x-5=0 或x+2=0

x1=5, x2=-2.

6.分析:Δ=9-4×3=-3<0,则原方程无实根。

7.分析:2x2=0.15

x2=

x=±

注意根式的化简,并注意直接方时,不要丢根。

8.分析:两边乘以3得:x2-3x-12=0,然后按照一次项系数配方,x2-3x+(-)2=12+(- )2,

方程可以利用等式性质变形,并且 x2-bx配方时,配方项为一次项系数-b的一半的平方。

9.分析:x2-2x=m, 则 x2-2x+1=m+1

则(x-1)2=m+1.

中考解析

考题评析

1.(甘肃省)方程的根是( )

(A) (B) (C) 或 (D) 或

评析:因一元二次方程有两个根,所以用排除法,排除A、B选项,再用验证法在C、D选项中选出正确

选项。也可以用因式分解的方法解此方程求出结果对照选项也可以。选项A、B是只考虑了一方面忘记了一元

二次方程是两个根,所以是错误的,而选项D中x=-1,不能使方程左右相等,所以也是错误的。正确选项为

C。

另外常有同学在方程的两边同时除以一个整式,使得方程丢根,这种错误要避免。

2.(吉林省)一元二次方程的根是__________。

评析:思路,根据方程的特点运用因式分解法,或公式法求解即可。

3.(辽宁省)方程的根为( )

(A)0 (B)–1 (C)0,–1 (D)0,1

评析:思路:因方程为一元二次方程,所以有两个实根,用排除法和验证法可选出正确选项为C,而A、

B两选项只有一个根。D选项一个数不是方程的根。另外可以用直接求方程根的方法。

4.(河南省)已知x的二次方程的一个根是–2,那么k=__________。

评析:k=4.将x=-2代入到原方程中去,构造成关于k的一元二次方程,然后求解。

5.(西安市)用直接方法解方程(x-3)2=8得方程的根为( )

(A)x=3+2 (B)x=3-2

(C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2

评析:用解方程的方法直接求解即可,也可不计算,利用一元二次方程有解,则必有两解及8的平方

根,即可选出。

课外拓展

一元二次方程

一元二次方程(quadratic equation of one variable)是指含有一个未知数且未知数的次项是二

次的整式方程。 一般形式为

ax2+bx+c=0, (a≠0)

在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它

的倒数之和等于 一个已给数,即求出这样的x与,使

x=1, x+ =b,

x2-bx+1=0,

他们做出( )2;再做出 ,然后得出解答:+ 及 - 。可见巴比伦人已知道一元二次

方程的求根公式。但他们当时并不接受 负数,所以负根是略而不提的。

埃及的纸草文书中也涉及到最简单的二次方程,例如:ax2=b。

在公元前4、5世纪时,我国已掌握了一元二次方程的求根公式。

希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中

之一。

公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程x2+px+q=0的一个求根公

式。

在阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种

不同的形式,令 a、b、c为正数,如ax2=bx、ax2=c、 ax2+c=bx、ax2+bx=c、ax2=bx+c 等。把二次方程分成

不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还 次

给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的

数学家们为了解三次方程而开始应用复数根。

韦达(1540-1603)除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。

我国《九章算术.勾股》章中的第二十题是通过求相当于 x2+34x-71000=0的正根而解决的。我国数学

家还在方程的研究中应用了内插法。