质数和合数的定义小学_质数和合数的意义和性质
什么是合数,什么是质数?
1、质数:一个大于1的整数,如果除1和它本身以外,没有其他的约数,这样的数就叫作质数,也叫素数。
质数和合数的定义小学_质数和合数的意义和性质
质数和合数的定义小学_质数和合数的意义和性质
2、合数:一个大于1的整数,如果除了1和它本身以外,还有其他的约数,这样的数就叫作合数。
3、奇数:奇数亦称单数,是一类重要的数,即不能被2整除的整数。奇数常表示为2n+1或2n-1,其中n是整数。
4、偶数:偶数亦称双数,是一类重要的数,即能被2整除的整数。偶数常表示为2n,其中n是整数。偶数的和、、积都是偶数。
扩展资料:
由质数和合数的概念可以知道,在非0的自然数中,1既不是质数也不是合数。历史上曾将1也包含在质数之内,但后来为了算术基本定理,终1被数学家排除在质数之外。在小学阶段,学生学习质数和合数,是为后面学习求公因数、小公倍数以及约分、通分打下基础。
在数论中,质数有着重要的地位,一直吸引着许多数学家们不断去探索。0年前,古希腊数学家欧几里得证明了质数的个数是无限的,并提出少量质数可写成“2的n次方减1”的形式---这里n也是一个质数。此后,许多数学家曾对这种质数进行研究。17世纪的法国教士梅森是其中成果较为卓著的一位,因此后人将“2的n次方减1”形式的质数称为梅森质数。
质数和合数的定义是什么?
质数就是除了数字“1”和其本身之外再也没有其他的因数的数字。质数基本上全部都是单数,除了有一个比较特殊的偶数,就是数字“2”,因为数字“2”除了其本身和数字“1”以外,再无其他因数。以下列举100以内的所有质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
合数就是除了数字“1”和其本身之外还有其他因数的数字。即自然数里除去质数外,其他都是合数。
扩展资料:
质数的性质:
1、质数p的约数只有两个:1和p。
2、初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是的。
3、质数的个数是无限的。
4、质数的个数公式:
,是不减函数。
5、若n为正整数,在
到之间至少有一个质数。
6、若n为大于或等于2的正整数,在n到
之间至少有一个质数。
7、若质数p为不超过n(
)的质数,则
。8、所有大于10的质数中,个位数只有1,3,7,9
合数的性质:
1、所有大于2的偶数都是合数。
2、所有大于5的奇数中,个位为5的都是合数。
3、除0以外,所有个位为0的自然数都是合数。
4、所有个位为4,6,8的自然数都是合数。
5、小的(偶)合数为4,小的奇合数为9。
6、每一个合数都可以以形式被写成质数的乘积,即分解质因数。(算术基本定理)
7、对任一大于5的合数(威尔逊定理)
参考资料:
小学数学质数和合数的概念
质数又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数,否则称为合数。合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
质数相关定理
1.在一个大于1的数a和它2倍之间,即区间(a,2a)中必存在至少一个素数。
2.存在任意长度的素数等数列。(格林和陶哲轩,2004年)
3.一个偶数可以写成两个数字之和,其中每一个数字都多只有9个质因数。(挪威布朗,1920年)
4.一个偶数必定可以写成一个质数加上一个合成数,其中的因子个数有上界。(瑞尼,1948年)
5.一个偶数必定可以写成一个质数加上一个多由5个因子所组成的合成数。后来,有人简称这结果为(1+5)(,1968年)
6.一个充分大偶数必定可以写成一个素数加上一个多由2个质因子所组成的合成数。简称为(1+2)(陈景润)
什么是质数,什么是合数
质数:质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数
例如:只有当23除与自身(也就是23)和除与一的时候所得数字为一个整数,除与其他数都无法获得整数所以为质数。
2.合数:指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数
例如:4,除了能被自身(也就是4)和被一整除,还能被2所整除得到整数,所以为合数,同时4也是小的合数。
质数:
质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。
性质:质数的个数是无穷的。
素数定理:
1、在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。
2、存在任意长度的素数等数列。
3、一个偶数可以写成两个合数之和,其中每一个合数都多只有9个质因数。
4、一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。
5、一个偶数必定可以写成一个质数加上一个多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5)
6、一个充分大偶数必定可以写成一个素数加上一个多由2个质因子所组成的合成数。简称为 (1 + 2)
性质:
质数具有许多独特的性质:
(1)质数p的约数只有两个:1和p。
(2)初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是的。
(3)质数的个数是无限的。
(4)质数的个数公式π(n) 是不减函数。
(5)若n为正整数,在n^2到 (n+1)^2 之间至少有一个质数。
(6)若n为大于或等于2的正整数,在n到 n!之间至少有一个质数。
(7)若质数p为不超过n( n>=4)的质数,则p>n/2。
(8)所有大于10的质数中,个位数只有1,3,7,9
合数:
1、所有大于2的偶数都是合数。
2、所有大于5的奇数中,个位为5的都是合数。
3、除0以外,所有个位为0的自然数都是合数。
4、所有个位为4,6,8的自然数都是合数。
5、小的(偶)合数为4,小的奇合数为9。
6、每一个合数都可以以形式被写成质数的乘积,即分解质因数。(算术基本定理)
7、对任一大于5的合数(威尔逊定理):(p-1)!=-1(modp)
什么是质数和合数
质数又称素数。是一个大于1的自然数,并且因数只有1和它自身,不能整除其他自然数。合数则因数除了1和本身还有其他因数的数。
扩展资料:
质数的性质:
质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,N+1是素数或者不是素数。
如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些设的素数中。
1、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在设的素数中。因此无论该数是素数还是合数,都意味着在设的有限个素数之外还存在着其他素数。所以原先的设不成立。也就是说,素数有无穷多个。
2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。
参考资料:
质数和合数是什么意思?老师告诉你 ,很详细
在自然数中,我们将那些可以被2整除的数叫作偶数,如2、4、6、8、10、...等,剩下的那些自然数就叫作奇数,如1、3、5、7、9、...等。
这样,所有的自然数就被分成了偶数和奇数两大类。另一方面,除去1以外,有的数除了1和它本身以外,不能再被别的整数整除,如2、3、5、7、11、13、17、...等,这种数称作素数(也称质数)
有的数除了1和它本身以外,还能被别的整数整除,这种数就叫合数,如4、6、8、9、10、12、14、...等,就是合数。
1这个数比较特殊,它既不算素数也不算合数。这样,所有的自然数就又被分为1和素数、合数三类。
拓展资料:质数(prime number)又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数。
根据算术基本定理,每一个比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中的顺序,那么写出来的形式是的。小的质数是2。
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。小的合数是4。其中,完全数与相亲数是以它为基础的。
参考资料:百度百科词条
质数又称素数,是一个大于1的自然数,并且因数只有1和它自身,不能整除其他自然数。
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
50以内的合数是:4、6、8、9、10、12、14、15、16、18、20、21、22、24、25、26、27、28、30、32、33、34、35、36、38、39、40、42、44、45、46、48、49、50。
50以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47。
扩展资料:
合数性质:
1,所有大于2的偶数都是合数。
2,所有大于5的奇数中,个位为5的都是合数。
3,除0以外,所有个位为0的自然数都是合数。
4,所有个位为4,6,8的自然数都是合数。
5,小的(偶)合数为4,小的奇合数为9。
6,每一个合数都可以以形式被写成质数的乘积,即分解质因数。(算术基本定理)
质数性质:
质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,
是素数或者不是素数。
如果
为素数,则
要大于p1,p2,……,pn,所以它不在那些设的素数中。
1、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在设的素数中。
因此无论该数是素数还是合数,都意味着在设的有限个素数之外还存在着其他素数。所以原先的设不成立。也就是说,素数有无穷多个。
2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。
参考资料:
质数
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为质数。
小的质数是2, 它也是的偶素数。 前面的素数依次排列为:2,3,5,7,11,13,17,19, 23, 29, 31......
合数
比1大但不是素数的数称为合数。
自然数中除能被1和本数整除外,还能被其他的数整除的数。
如:6能被1和6整除,也能被2和3整除,所以说不是质数,是合数。
4,6,8,10,12,14,16,18,20,22,24,26,28,30......
备注:1和0既非素数也非合数。
质数又称素数。是一个大于1的自然数,并且因数只有1和它自身,不能整除其他自然数。合数则因数除了1和本身还有其他因数的数。
扩展资料:
质数的性质:
质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,N+1是素数或者不是素数。
如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些设的素数中。
1、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在设的素数中。因此无论该数是素数还是合数,都意味着在设的有限个素数之外还存在着其他素数。所以原先的设不成立。也就是说,素数有无穷多个。
2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。
质数是除了一和它本身之外,不能被其他数整除的正整数,又称素数
100以内的质数有:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
合数是除了质数以外的数,即除了一和它本身以外,还有其他的因数的正整数
区别在于因数的个数,质数只有2个因数,合数有多于2个因数
1既不是质数,也不是合数
质素:只能被它本身和1整除的正整数叫质数
合数:除它本身和1外还能被其他整数整除的正整数叫合数
注意:1既不是合数也不是质数
2是质数里的偶数
这些概念都是针对正整数而言的,整除不等于除尽
质数是除了1和它本身之外,不能被其他数整除的正整数,又称素数.
质数和合数的区别在于因数的个数,质数只有2个因数,合数有多于2个因数.
除1,0以外不是质数的正整数就是合数.
"0"“1”既不是质数也不是合数.
小学质数和合数的概念
质数
根据算术基本定理,每一个比1大的整数要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中的顺序,那么写出来的形式是的,小的质数是2。
质数又称素数,个数是无穷的,一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数。
合数
合数又名合成数,指自然数中除了能被1和本身整除外,还能被0除外的其他数整除的数。两个或两个以上素数的乘积,可以组成一个合数,并且只可以组成一个合数。反之,一个合数可以拆分为一组素数的乘积,并且只可以拆分为一组素数的乘积。
质数(prime number)又称素数,有无限个。质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。小的合数是4。其中,完全数与相亲数是以它为基础的
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。