5年级数学下册重点知识有哪些内容?

5年级数学下册重点知识有如下:

数学小知识五年级下册(五年级下册数学人教版)数学小知识五年级下册(五年级下册数学人教版)


数学小知识五年级下册(五年级下册数学人教版)


1、表示相等关系的式子叫做等式。

2、含有未知数的等式是方程。

3、方程一定是等式;等式不一定是方程。等式方程

4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。

5、求方程中未知数的过程,叫做解方程。

解方程时常用的关系式:

一个加数=和-另一个加数 减数=被减数- 被减数=减数+。

一个因数=积另一个因数 除数=被除数商 被除数=商除数。

注意:解完方程,要养成检验的好习惯。

6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和个数=中间数

7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和个数2(高斯求和公式)

五年级下册数学内容有哪些?

1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。

2、一个数的因数的求法:一个数的因数的个数是有限的,小的是1,的是它本身,方法是成对地按顺序找。

3、一个数的倍数的求法:一个数的倍数的个数是无限的,小的是它本身,没有的,方法时依次乘以自然数。

4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数.个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。

5、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),小的质数是2。一个数,如果除了1和它本身还有别的因数的数叫做合数,小的合数是4。

五年级数学下册的重点

五年级下册数学知识要点:

单元:图形的变换

1. 轴对称图形:一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。这条直线叫做它的对称轴。

2. 轴对称图形的特征:1、对称点到对称轴的距离相等;2、对应点连线与对称轴互相垂直。

3. 旋转:图形或物体绕着一个点或一条轴运动的现象叫做旋转。

第二单元:因数与倍数

1. 因数和倍数:在整数乘法里,如果a×b=c,那么a和b是c的因数,c是a和b的倍数。

2. 为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。但是0也是整数。

3. 一个数的小因数是1,因数是它本身。一个数的因数的个数是有限的。

4. 一个数的小倍数是它本身,没有的倍数。 一个数的倍数的个数是无限的。

5. 个位上是0、2、4、6、8的数都是2的倍数。个位上是0、5的数都是5的倍数。一个数,每个数位上的数的和是3的倍数,这个数就是3的倍数。

6. 自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

7. 小的奇数是1,小的偶数是0。小的质数是2,小的合数是4。

8.

四则运算中的奇偶规律:

奇数+奇数=偶数 奇数-奇数=偶数 奇数×奇数=奇数

偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数

奇数+偶数=奇数 奇数-偶数=奇数 奇数×偶数=偶数

偶数-奇数=奇数

9. 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);如果除了1和它本身还有别的因数,这样的数叫做合数。

10. 1既不是质数,也不是合数。

11. 自然数按照因数的个数多少,可以分为1、质数、合数;按是否是2的倍数,可以分为奇数、偶数。

12. 100以内的质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

第三单元:长方体和正方体

1. 正方体也叫立方体。

2. 长方体的特征是:①长方体有6个面;②每个面都是长方形(特殊情况下有两个相对的面是正方形);③相对的面完全相同;④有12条棱;⑤相对的棱长度相等;⑥有8个顶点。

3. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

4. 正方体可以看成是长、宽、高都相等的长方体。正方体是特殊的长方体。

5. 正方体的特征是:①正方体有6个面;②每个面都是正方形;③所有的面都完全相同;④有12条棱;⑤所有的棱长度都相等;⑥有8个顶点。

6. 长方体的棱长总和=(长+宽+高)×4

7. 正方体的棱长总和=棱长×12

8. 长方体六个面的面积总和叫做长方体的表面积。

9. 上面或下面面积=长×宽;前面或后面面积=长×高;左面或右面面积=宽×高。

10. 长方体的表面积=(长×宽+长×高+宽×高)×2

11. 正方体的表面积=棱长2×6

12. “有两个相对的面是正方形”的长方体表面积=正方形面的面积×2+长方形面的面积×4

13. 长方体的侧面积=底面周长×高

14. 物体所占空间的大小,叫做物体的体积。

15. 常用的体积单位有立方厘米,立方分米和立方米,可以分别写成cm3,dm3,和m3。

16. 棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3;棱长是1m的正方体,体积是1m3。

17. 长方体的体积=长×宽×高;用字母表示是V=abh

18. 正方体的体积=棱长3;用字母表示是V=a3

19. 长方体(或正方体)的体积=底面积×高=横截面积×长

20. 在工程上,1立方米简称1方。

21. 1个长方体或正方体,如果所有的棱长都扩大n倍,那么棱长总和也扩大n倍,表面积扩大n2倍,体积扩大n3倍。

22. 棱长总和相等的长方体或正方体,正方体的体积。

23. 1立方米=1000立方分米;1立方分米=1000立方厘米。

24. 每相邻两个长度单位间的进率是10;每相邻两个面积单位之间的进率是100;每相邻两个体积单位之间的进率是1000。

25. 容器所能容纳物体的体积,通常叫做它们的容积。计量容积,一般就用体积单位。

26. 计量液体的体积,常用的容积单位是升和毫升,也可以写成L和ml。

27. 1升相当于1立方分米,1毫升相当于1立方厘米,所以1升=1000毫升。

28. 长方体或正方体容器容积的计算方法,跟体积的计算方法相同,但要从容器里面量长、宽、高。所以容器的容积比体积要小一些。

29. 浸没在水中的物体的体积=现在水的体积-原来水的体积=容器的长×容器的宽×水面上升的高度

30. 怎样测量一个不规则的物体的体积呢?先在量杯里装上适量的水,记下水面对应的刻度,再把物体浸没在水中,再记下新的水面对应刻度。两次刻度的,就是这个不规则物体的体积。

第四单元:分数的意义和性质

1. 一个物体或是几个物体组成的一个整体都可以用自然数1来表示,我们通常把它叫做单位“1”。

2. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如3/7表示把单位“1”平均分成7份,取其中的3份。

3. 5/8米按分数的意义,表示:把1米平均分成8份,取其中的5份。按分数与除法的关系,表示:把5米平均分成8份,取其中的1份。

4. 把单位“1”平均分成若干份,表示其中一份的数叫分数单位。

5. 分数和除法的关系是:分数的分子相当于除法中的被除数,分数的分数线相当于除法中的除号,分数的分母相当于除法中的除数,分数的分数值相当于除法中的商。

6. 把一个整体平均分成若干份,求每份是多少,用除法。总数÷份数=每份数。

7. 求一个数量是另一个数量的几分之几,用除法。一个数量÷另一个数量=几分之几(几倍)。

8. 分子比分母小的分数叫真分数。真分数小于1。

9. 分子比分母大或分子和分母相等的分数叫做分数。分数大于1或等于1。

10. 带分数包括整数部分和分数部分,分数部分应当是真分数。带分数大于1。

11. 把分数化成带分数的方法是用分子除以分母,商是整数部分,余数是分子,分母不变。把带分数化成分数的方法是用整数部分乘分母的积加原来的分子作分子,分母不变。

12. 整数可以看成分母是1的分数。例如5可以看成是5/1。

13. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。

14. 几个数公有的因数叫做这几个数的公因数,其中的公因数叫作它们的公因数。小公因数一定是1。

15. 几个数公有的倍数叫做这几个数的公倍数,其中小的公倍数叫作它们的小公倍数。没有的公倍数。

16. 求公因数或小公倍数可以用列举法,也可以用短除法分解质因数。

17. 公因数只有1的两个数叫做互质数。分子和分母是互质数的分数叫做简分数。简分数不一定是真分数。

18. 除法计算的结果可以用分数表示,比较方便。如果计算结果可以约分的话,要化简成简分数。

19. 如果两个数是倍数关系,那么它们的公因数是较小的数,小公倍数是较大的数。

20. 如果两个数是互质关系,那么它们的公因数是1,小公倍数是它们的积。

21. 数A×数B=它们的公因数×它们的小公倍数。

22. 两个数是互质数的几种特殊情况有:1、1和任何数都是互质数;2、两个相邻的自然数一定是互质数;3、两个相邻的奇数一定是互质数;4、两个不同的质数一定是互质数;5、一个质数和一个不是它倍数的合数一定是互质数。

23. 把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。把几个异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

24. 把分数化成小数的方法是用分子除以分母;把小数化成分数的方法是先写成分母是10、100……的分数,然后再进行约分。

25. 如果一个简分数的分母除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数。

26. 两个数的公因数等于两个数公有的质因数的积;两个数的小公倍数等于两个数公有的质因数×它们各自的质因数。

27. 两个数的公因数,都是这两个数的公因数的因数;两个数的公倍数,都是这两个数的小公倍数的倍数。

希望我的回答能对你有所帮助咯。。。(^__^) 嘻嘻……

数学五年级下册学习重点

五年级下册数学重要知识点

五年级下册数学重要知识点有哪些呢?感兴趣的同学们快来和我一起看看吧。下面是由我为大家整理的“五年级下册数学重要知识点”,仅供参考,欢迎大家阅读。

五年级下册数学重要知识点

单元 方程

1、表示相等关系的式子叫做等式。

2、含有未知数的等式是方程。

3、方程一定是等式;等式不一定是方程。等式>方程

4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。

5、求方程中未知数的过程,叫做解方程。

解方程时常用的关系式:

一个加数=和-另一个加数 减数=被减数- 被减数=减数+

一个因数=积÷另一个因数 除数=被除数÷商 被除数=商×除数

注意:解完方程,要养成检验的好习惯。

6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)

8、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。B、理清题目的等量关系。C、设未知数,一般是把所求的数用X表示。D、根据等量关系列出方程E、解方程F、检验G、作答。

第二单元 确定位置

1、确定位置时,竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。

2、数对(x,)第1个数表示第几列(x),第2个数表示第几行(),写数对时,是先写列数,再写行数。

3、从地球仪上看,连接北极和南极两点的是经线,垂直于经线的线圈是纬线,经线和纬线、分别按一定的顺序编排表示“经度”和“纬度”,“经度”和“纬度”都用度(°)、分(′)、秒(″)表示。

4、将某个点向左右平移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行()上的数字不变。举例:将点(6,3)的位置向右平移2个单位后的位置是(8,3),列6+2=8;将点(6,3)的位置向左平移2个单位后的位置是(4,3),列6-2=4。

5、将某个点向上下平移几格,只是行()上的数字发生加减变化,向上减,向下加,列(x)上的数字不变。举例:将点(6,3)的位置向上平移2个单位后的位置是(6,5),行3+2=5;将点(6,3)的位置向下平移2个单位后的位置是(6,1),列3-2=1。

第三单元 公倍数和公因数

1、一个数小的因数是1,的因数是它本身,一个数因数的个数是有限的。

一个数小的倍数是它本身,没有的倍数。一个数倍数的个数是无限的。

一个数的因数等于这个数小的倍数。

2、几个数公有的倍数,叫做这几个数的公倍数,其中小的一个,叫做这几个数的小公倍数,用符号[ ,]表示。几个数的公倍数也是无限的。

3、两个数公有的因数,叫做这两个数的公因数,其中的一个,叫做这两个数的公因数,用符号( , )。两个数的公因数也是有限的。

4、两个素数的积一定是合数。举例:3×5=15,15是合数。

5、两个数的小公倍数一定是它们的公因数的倍数。举例:[6,8]=24,(6,8)=2,24是2的倍数。

6、求公因数和小公倍数的方法:

倍数关系的.两个数,公因数是较小的数,小公倍数是较大的数。举例:15和5,[15,5]=15,(15,5)=5;

素数关系的两个数,公因数是1,小公倍数是它们的乘积。举例:[3,7]=21,(3,7)=1;

一个素数和一个合数,公因数是1,小公倍数是它们的乘积。[5,8]=40,(5,8)=1;

相邻关系的两个数,公因数是1,小公倍数是它们的乘积。[9,8]=72,(9,8)=1;

特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,公因数是1,小公倍数是它们的乘积。

拓展阅读:五年级上册数学知识点

单元 小数乘法

1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:

⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法:

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法:乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)

变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c

减法:减法性质:a-b-c=a-(b+c)

除法:除法性质:a÷b÷c=a÷(b×c)

第二单元 位置

8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。二是给出坐标中的一个点,要能用数对表示。

第三单元 小数除法

10、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3,求另一个因数是多少。

11、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

11、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

12、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

13、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大(缩小),商随着扩大(缩小)。③被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。

14、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.简写作6.32

15、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。小数分为有限小数和无限小数。

第四单元 可能性

16、发生有三种情况:可能发生、不可能发生、一定发生。

17、可能发生的,可能性大小。把几种可能的情况的份数相加做分母,单一的这种可能性做分子,就可求出相应发生可能性大小。

第五单元 简易方程

18、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。

19、a×a可以写作a·a或a ,a 读作a的平方 2a表示a+a

特别地1a=a这里的:“1“我们不写

20、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式 必须有未知数两者缺一不可)。使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。

21、解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

22、10个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数

减法:=被减数-减数 被减数=+减数 减数=被减数-

乘法:积=因数×因数 一个因数=积÷另一个因数

除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商

23、所有的方程都是等式,但等式不一定都是等式。

24、方程的检验过程:方程左边=……

25、方程的解是一个数;解方程式一个计算过程。=方程右边 所以,X=…是方程的解。

第六单元 多边形的面积

26、公式:

正方形:

正方形的面积=边长X边长 S正=aXa=a2;

已知:正方形的面积,求边长;

长方形:

长方形的面积=长X宽;

S长=aXb

已知:长方形的面积和长,求宽;

平行四边形:

平行四边形的面积=底X高;

S平=aXh

已知:平行四边形的面积和底,求高 h=S平÷a;

三角形:

三角形的面积=底X宽高÷2;

S三=aXh÷2

已知:三角形的面积和底,求高;

H=S三X2÷a

梯形:

梯形形的面积=(上底+下底)X高÷2

S梯=(a+b)X2

已知:梯形的面积与上下底之和,求高

高=面积×2÷(上底+下底)

上底=面积×2÷高-下底

组合图形:

当组合图形是凸出的,用两种或三种简单图形面积相加进行计算。

当组合图形是凹陷的,用一种的简单图形面积减较小的简单图形面积进行计算。

27、平行四边形面积公式推导:剪拼、平移

平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。

28、三角形面积公式推导:旋转

两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;

平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷2;

29、梯形面积公式推导:旋转

30、两个完全一样的梯形可以拼成一个平行四边形。平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2。

小学五年级数学(下册)第1-6单元知识点归纳

二 因数和倍数

1、a×b=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。

找因数的方法:

一个数的因数的个数是有限的,其中小的因数是1,的因数是它本身。

一个数的倍数的个数是无限的,小的倍数是它本身。

2、自然数按是否是2的倍数来分:奇数 偶数

奇数:不是2的倍数

偶数:是2的倍数(0也是偶数)

小的奇数是1,小的偶数是0.

个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

能同时是2、3、5的倍数的的两位数是90,小的三位数是120。

3、自然数按因数的个数来分:质数、合数、1.

质数:有且只有两个因数,1和它本身

合数:至少有三个因数,1、它本身、别的因数

1: 只有1个因数。“1”既不是质数,也不是合数。

小的质数是2,小的合数是4。

20以内的质数:有8个(2、3、5、7、11、13、17、19)

100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、

43、47、53、59、61、67、71、73、79、83、89、97

4、分解质因数

用短除法分解质因数 (一个合数写成几个质数相乘的形式)

5、公因数、公因数

几个数公有的因数叫这些数的公因数。其中的那个就叫它们的公因数。

用短除法求两个数或三个数的公因数 (除到互质为止,把所有的除数连乘起来)

几个数的公因数只有1,就说这几个数互质。

两数互质的特殊情况:

⑴1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质;

⑷2和所有奇数互质; ⑸质数与比它小的合数互质;

6、公倍数、小公倍数

几个数公有的倍数叫这些数的公倍数。其中小的那个就叫它们的小公倍数。

用短除法求两个数的小公倍数(除到互质为止,把所有的除数和商连乘起来)

用短除法求三个数的小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

如果两数是倍数关系时,那么较小的数就是它们的公因数;

较大的数就是它们的小公倍数。

如果两数互质时,那么1就是它们的公因数

它们的积就是它们的小公倍数。

五年级下册数学内容有哪些?

五年级下册数学内容有如下:

1、因数:一个数的因数的个数是有限的,小的因数是1,的因数是它本身。

一个数的因数的求法:成对地按顺序找,或用除法找。

2、倍数:一个数的倍数的个数是无限的,小的倍数是它本身。

一个数的倍数的求法:依次乘自然数。

3、自然数按能不能被2整除分为:奇数、偶数。

奇数:不是2的倍数的数叫做奇数。

偶数:是2的倍数的数叫做偶数。

小的奇数是1,小的偶数是0。

4、合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。如4、6、8、9、10、12、14、15、16、18、20、22都是合数。

5、公因数、公因数。

几个数公有的因数叫这些数的公因数。其中的那个因数就叫它们的公因数。用短除法分解质因数(一个合数写成几个质数相乘的形式)例:12=2×2×3。