增材制造技术 增材制造技术有哪些类型
增材制造技术是冷门专业吗?
增材制造技术是指基于离散-堆积原理,由零件三维数据驱动直接制造零件的科学技术体系。增材制造技术通过逐层堆叠材料来制造物体,相对于传统的减材制造方法,它具有很多优势,例如可以实现复杂的几何形状、减少浪费、提高生产效率等。这使得增材制造技术在航空航天、医疗、汽车制造、工业制造、消费品制造等领域都得到了广泛应用。
增材制造技术 增材制造技术有哪些类型
增材制造技术 增材制造技术有哪些类型
就业方向
尽管增材制造技术的应用正在扩大,但这并不意味着在所有地方都已经普及。在某些地区和领域,可能还需要一些时间才能完全普及这项技术。因此,虽然增材制造技术在一些先进领域和企业中是热门话题,但在其他地方仍然可能相对较新。
增材制造技术应用是什么专业
是中华研究确定《中等职业学校专业目录》增补的新专业,自2019年起执行。增材制造技术主要是通过计算机中生成零件的三维CAD模型,根据模型的尺寸数据采用激光熔覆的方式将零件的材料本专业主要的就业方向包括在汽车、机械制造、钢铁冶金、轻工、医疗器械、航空航天等领域从事3D建模、3D测量、3D打印制造、模具设计等相关工作。通过喷墨的形式逐层堆积起来形成立体零件的技术。
增材制造技术应用专业
主要课程:机械制图与机械CAD、机械基础、电工技术、机械制造技术、3D成型材料功能与应用、CAD/CAM软件应用、逆向工程技能训练、3D打印综合技能训练等。
就业方向:可在产品制造企业、打印服务公司、设计公司和其他3D领域企业担任设计、技术作、咨询服务和管理等工作;也可以从事3D产品你可以先去【绘学霸】网站找“3d打印建模”板块的【免费】视频教程-设计、三维扫描造型、打印设备维护与管理等工作。
增材制造技术专业介绍
Hello同学们,今天学姐要为大家介绍的是增材制造技术专业~感兴趣的话就快快跟我一起看下去吧!
发展远离平衡条件的专用材料高通量技术模型,开发适用于高通量计算的多尺度模拟算法。研究成分和组织结构微区可控的粉体材料制备技术,通过高通量实验来建立材料基因数据库。通过高通量计算、实验、数据库的协同,快速研发具有优异性能的 LAM 专用材料。基本情况
增材制造技术专业学制为三年,层次为专科(高职),专业类为机械设计制造类,代码是460112。主要研究采用激光熔覆的方式将零件的材料逐层堆积起来形成实体零件。
本专业的核心课程主要包括《机械制图及CAD》、《公配合与技术测量》、《逆向工程与3D打印技术》、《数控加工工艺与编2. 金属 LAM 装备设计和制造技术存在距程》、《增材制造技术原理及应用》等。
增材制造技术有哪些具体的应用?
3、向组织与结构一体化制造发展。未来需要解决的关键技术包括精度控制技术、大尺寸构件高效制造技术、复合材料零件制造技术。增材制造技术的发展将有力地提高航空制造的我所在的公司是专门生产各种零件、模具的,每天都要使用增材制造,通过这种技术可以将复杂的零部件结构离散为简单的二维平面加工,解决同类型零部件难以加工难题。我们用的是Stratasys J8 系列 3D 打印机,拥有超过50万种配色、纹理模拟、灵活透明的材料,工作流程也很简便,可以快速完成3D打印样件的外形和配合验证,是市面上相对比较好用的彩色3D打印机。此外,增材制造技术的应用越来越广泛,覆盖了航天航空、汽车工业、船舶制造、能源动力、轨道交通、电子工业、模具制造、医疗健康、文化创意、建筑等众多领域。毫不夸张地说,如果没有增材制造,很多行业将会寸步难行。谢谢您采纳并认可我精湛的回答创新能力,支撑我国由制造大国向制造强国发展。金属激光增材制造技术发展研究
如果你对新兴技术、制造工艺以及创新领域感兴趣,增材制造技术可能是一个有前途的领域。不过,选择专业还应该考虑自己的兴趣、技能和职业目标,以及该领域的就业前景和发展趋势。随着时间的推移,增材制造技术的应用和市场情况可能会发生变化,因此建议你关注的行业动态和趋势。激光增材制造(LAM)属于以激光为能量源的增材制造技术,能够改变传统金属零件的加工模式,主要分为以粉床铺粉为技术特征的激光选区熔化(SLM)、以同步送粉为技术特征的激光直接沉积(LDMD) [1] 。目前 LAM 技术在航空、航天和医疗领域的应用发展最为迅速 [2~4]。鉴于相关领域主要涉及金属结构制造,本文重点开展金属LAM 技术的发展研究。
随着金属零件使用性能和结构复杂程度的提高,采用铸造、锻造等传统工艺实施制造的难度、成本和周期迅速增加,而兼具技术先进性和资源经济性的 LAM 技术为高性能、复杂结构制造提供了新型解决方案:实现拓扑优化结构、点阵结构、梯度材料结构、复杂内部流道结构等不再困难,结构功能一体化、轻量化、超强韧、耐极端载荷、超强散热等新型结构得以应用,相应结构效能大幅提高 [1,4]。例如,美国通用电气公司(GE)SLM 航空发动机燃油喷嘴、航空航天大学 LDMD 飞机钛合金框是典型应用案例。
从当前国内外金属 LAM 技术的发展情况来看,真正走向产业化的技术方向还属少数,这是因为基础理论积淀、关键技术突破、工程化应用技术成熟度、技术研发商业化推广等方面在不同程度上制约了 LAM 技术产业化应用。目前国内外研究主要集中在控性研究,侧重孔隙率、裂纹、组织特征、各向异性等基础研究 [5~9]。有关控形、检测、产品标准等偏向产品研发的研究较少,这也表明金属 LAM 整体上处于从技术研究向产业应用过渡的发展阶段。
本文通过文献、现场和问卷调研,对金属 LAM 领域研究与应用的发展现状和趋势进行系统梳理,分析国内与国外、理论研究与应用需求的距,提出产业化应用涉及的核心关键技术和瓶颈工艺,以期推动我国金属 LAM 技术产业应用的发展。
二、金属激光增材制造需求分析
LAM 基于数模切片,通过逐层堆积来实属零件的近净成形制造,尤其适合复杂形状零件、梯度材质与性能构件、复合材料零件和难加工材料零件的制造,在航空航天等先进制造方向备受青睐。一方面,相关零件外形复杂多变、材料性能要求高、难以加工且成本较高;另一方面,新型飞行器朝着高性能、长寿命、高可靠性、低成本的方向发展,采用复杂、大型化的整体结构成为设计亟需。
此外,飞机、发动机的某些带有局部凸台、耳片等特殊结构的承力构件,采用锻造工艺将难以保证局部构型和性能;大型飞机的超大规格钛合金承力框已经超出现有锻造设备的加工能力上限。这对锻造 + 增材制造 / 增材连接的复合制造技术提出了明确需求。
三、国外金属激光增材制造发展现状
(一)技术研究现状
1. 激光选区熔化技术
能量密度对 Ti-6Al-4V 钛合金的 SLM 组织和缺陷存在明显的影响 [5,12,13]:低能量密度造成片层状的 α+β 相组织,容易引发气孔和熔合不良现象;高能量密度造成针状马氏体 α′ 组织,促进铝元素偏聚和 α2 -Ti3Al 相形成;沉积态 Ti-6Al-4V 合金疲劳强度比锻件降低约 80% [6] ;热等静压可降低孔隙率并改善性能。对于 CMSX486 单晶合金 SLM,低能量密度减少裂纹,高能量密度降低孔隙率 [8] 。CM247LC 合金 SLM 纵截面主要由柱状 γ 晶粒组成,Hf、Ta、W、Ti 偏聚增加了沉淀物和残余应力,造成零件内部开裂 [14] 。IN738LC 高温合金 SLM 的微裂纹与 Zr 在晶界处富集偏析有关 [15] 。适量添加 Re 可以细化 IN718 合金的树枝状晶,但过量的 Re 对疲劳强度不利 [14] 。SLM 的 Hasloy-X 合金经热处理形成等轴晶,屈服强度降低;经热等静压后抗拉强度恢复沉积态水平,延伸率可提高 15% [16] 。
对于金属 LAM 工艺,国外开展了较多精细的研究。据了解,德国设备商针对一种新材料进行 SLM 工艺开发,需耗时 6~8 个月,调整参数达70 余个。通过拓扑优化来实现结构轻量化设计也是SLM 应用研究的重点,国外对应提出了设计制造、功能性优先等新理念。还发展了特殊支撑设计技术,使得制件与基板分离无需线切割,有效缩短了取件周期。
2. 激光直接沉积技术
1995 年,美国约翰斯 · 霍普金斯大学、宾夕法尼亚州立大学、MTS 系统公司共同开发了基于大功率 CO2 激光器的大尺寸钛合金零件 LDMD 技术,沉积速率为 1~2 kg/h,促成 LDMD 零件在飞机上的应用 [12] 。
LDMD 技术研究主要包括成形工艺和组织性能。美国桑地亚实验室和洛斯 · 阿拉莫斯实验室制备的 LDMD 成形零件,其力学性能接近甚至超过传统锻造零件。瑞士洛桑联邦理工学院研究了单晶叶片 LDMD 修复过程的稳定性、零件精度、组织、力学性能与工艺参数的关系,形成的修复技术已获得工程应用。
国外学者针对 Ti-6Al-4V 合金的 LDMD 技术进行了深入研究,揭示了工艺参数和增材制造组织、力学性能之间的联系,阐明了工艺调整和热等静压对组织、性能的调整作用 [13,17~19]。LDMD 技术为材料显微组织控制提供了较大的自由度:通过调节镍基高温合金 LDMD 形核与生长条件得到了符合预期的单晶与多晶组织 [9] ;美国航空航天局(NASA)发展的混合沉积多种金属于同一结构的 LDMD 技术,可使零件性能随部位不同而变化。德国企业将 LAM 技术与传统切削加工方法进行整合,可加工出传统工艺难以制造的复杂形状零件,且产品精度提高、表面粗糙度改善 [11] 。
(二)设备发展现状
德国是 SLM 技术及设备研究起步最早的,EOS 公司推出的 SLM 设备具有一定的技术优势,相关设备应用于 GE 公司 LEAP 航空发动机燃油喷嘴的加工制造,通过增材制造过程来进一步提高制造产品的质量;Realizer GmbH 公司的全方位设计、零件堆叠技术方案别具特色;Concept Laser 公司的设备以构建尺寸大见长;SLM Solutions 公司的激光技术和气流管理技术处于领先位置。美国3D Systems 公司依靠其专用粉末沉积系统的技术优势,可以成形精密的细节特征。英国 Renishaw PLC 公司在材料使用灵活性、更换便捷性方面具有技术特色。
2. 激光直接沉积设备
美国 EFESTO 公司在大尺寸金属 LAM 方面具有技术优势,所研制的 LDMD 设备工作室尺寸可达 1500 mm 1500 mm 2100 mm。美国 Optomec 公司推出的 LDMD 设备具有 900 mm 1500 mm 900 mm 的工作室空间,配置了 5 轴移动工作台,成形速度为 1.5 kg/h。德国企业提供的激光综合加工系统也是主流的 LDMD 设备。
近年来,增减材复合加工设备成为市场新热点。日本 DMG 公司推出了配有 2 kW 激光器、辅以5 轴联动数控铣床的 LDMD 设备,成形速度较普通粉床提高 20 倍,可在制造过程中铣削最终零件的不可达部位。日本 Mazak 公司推出的相关设备能够进行 5 轴车铣复合加工,使用对象包括多棱体锻件或铸件、回转体零件和复杂异形零件。
钛合金 LAM 在航空领域取得重要应用。美国率先将 LDMD 钛合金承力零件用于舰载歼击机;Carpenter 技术公司采用高强度的定制不锈钢进行增材制造,生产先进的航空齿轮;F-22 飞机维修采用了 SLM 耐蚀支架,使得维修时间显著缩短。英国成功将 LDMD 技术应用于无人机的整体框架制造。
SLM 技术在航空发动机的复杂零件制造方面获得广泛应用。美国 GE 公司率先将 SLM 技术应用于高压压气机的温度传感器外壳生产,产品获得美国联邦航空管理局(FAA)批准,配装了超过400 台 GE90-40B 航空发动机。GE 公司 LEAP 系列航空发动机的燃油喷嘴同样采用 SLM 技术进行生产(2020 年具备 44 000 个 / 年的生产能力)。美国普惠公司采用 SLM 技术生产管道镜套筒,配装了 PW1100G-JM 航空发动机。英国罗罗公司采用SLM 制造了遄达 XWB-97 航空发动机的钛合金前轴承组件(包含 48 个翼型导叶)。
2012 年起,LAM 技术获得了航天飞行器制造方面的应用。NASA 采用 LAM 技术制造 RS-25 火箭发动机的弯曲接头,在零件、焊缝、机械加工工序的数量方面相比传统方法下降了约 60%;若氢氧火箭发动机采用整体化设计和制造方法,零件总数将下降 80%。法国泰雷兹采用 SLM 技术制造了 Koreasat5A、Koreasat7 通信卫星的测控天线支撑零件(铝合金),降低质量约 22%,节省经费约30%。
LAM 技术的推广应用,加速了航空航天飞行器的结构拓扑优化和点阵结构设计。欧洲 Astrium 公司 Eurostar E3000 卫星平台的遥测 / 遥控天线铝合金安装支架,采用 LAM 进行整体制造后降低质量约 35%、提高结构刚度约 40%。美国 Cobra Aero 公司与英国 Renishaw PLC 公司合作,完成了具有复杂点阵结构的发动机整体部件 LAM 制造。此外,增减材复合加工技术开始走向应用。维珍轨道公司(Virgin Orbit)使用增减材混合机床进行火箭发动机燃烧室零件制造与精加工,2019 年完成了 24 次发动机测试运行。
(四)发展经验与启示
回顾上金属 LAM 技术的发展过程,以产业发展牵引技术研究和设备开发,通过产业链整合提高市场竞争力是重要的经验。应用企业关注自身产品的制造质量和生产成本,作为技术发展的主体和受益者,由其来整合材料、工艺、设备、验证、标准研究和人员培训,可以更加高效地推动LAM 产业的发展。例如,美国 GE 公司 LAM 产业应用居于地位,主要归因于产业链整合策略,收购了制造质量控制公司和增材制造设备公司以加强 LAM 产业链条的完整性;产品制造利用了遍布全球的 300 多台工业级制造设备。国外企业注重 LAM 产品制造方面的人员培训,如 GE 公司设有增材制造培训中心,配置专门设备,每年可培训数百名工程师。
四、国内金属激光增材制造发展现状与距分析
(一)发展现状
1. 金属 LAM 技术
国内针对 SLM 技术方向重点开展了形状尺寸、表面粗糙度控制等研究。西安铂力特激光成形技术有限公司采用 SLM 方法加工的流道类零件最小孔径约为 0.3 mm,薄壁零件的最小壁厚约为0.2 mm;零件整体尺寸精度达到 0.2 mm,粗糙度Ra 不大于 3.2 μm。南京航空航天大学以 SLM 精密制造为主线,通过全流程控制来提升零件综合性能。西安交通大学将 LAM 应用于空心涡轮叶片、航天推进器、 汽车 零件等的制造 [11] 。
2. 金属 LAM 设备
国内的LDMD和SLM设备研发能力相对较强,获得一定份额的市场应用。西安铂力特激光成形技术有限公司自主开发了 SLM 系列装备、激光高性能修复系列装备。南京中科煜宸激光技术有限公司研制了自动变焦同轴送粉喷头、长程送粉器、高效惰性气体循环净化箱体等核心器件,形成了金属LDMD 系列化装备。此外,易加三维 科技 有限公司、星航机电装备有限公司在工业级和小型金属 SLM 设备小批量生产,上海航天设备制造总厂有限公司在标准型和大幅面 SLM 设备和机器人型 LDMD 设备研制等方面均取得了良好进展。
3. 金属 LAM 应用
LDMD 主要应用于承力结构制造。航空航天大学制造的主承力框、主起落架等部件获得了航空航天飞行器、燃气涡轮发动机等装备应用。航空工业沈阳飞机设计研究所通过工程化应用验证来促进 LDMD 技术成熟度提升,实现了 8 种金属材料、10 类结构件的飞行器应用。航空工业飞机设计研究院实现了大型飞机外主襟翼滑轮架、尾翼方向舵支臂 LDMD 零件的装机应用。机电工程研究所实现了大尺寸薄壁骨架舱段结构的 LDMD 制造及应用。
SLM 主要应用于复杂形状零件制造。在航空领域,航空制造技术研究院实现了 SLM 产品装机应用;航空工业成都飞机设计研究所在飞机上使用了 SLM 辅助动力舱格栅结构进 / 排气门;航空工业直升机设计研究所在通风格栅结构、淋雨密封结构、进气道多腔体结构等方面实现了 SLM 零件装机应用。在航天领域,上海航天设备制造总厂有限公司的贮箱间断支架、空间散热器、导引装置等 SLM 产品获得装机应用;星航机电装备有限公司的舱段类结构件、纵面等 SLM 产品通过地面试验及飞行试验验证;机电工程研究所实现了小型复杂零件的 SLM 制造,纵面、支架等产品的技术成熟度达到 5 级;鑫精合激光 科技 发展()有限公司应用 SLM 制造了大尺寸薄壁钛合金点阵夹层结构件(集热窗框),满足了深空探测飞行器的严格技术要求。
此外,西安铂力特激光成形技术有限公司利用SLM 技术,每年可为航空航天领域提供 8000 余件零件;华中 科技 大学通过增减材复合加工方式制造了具有随形冷却水道的梯度材料模具,获得了较多的行业应用。
(二)面临的距
国内 LAM 专用材料的设计理论和方法体系尚显薄弱,专用材料设计工作少而分散。材料基因组技术缩短研发周期并降低研发成本,在国外相关材料设计方面取得了成功应用。国内在材料基因组技术的研究以及用于提高 LAM 专用材料性能等方面的基础较为薄弱。
在粉末制备方面,国内真空氩气雾化制粉技术相对成熟,制备的不锈钢、镍基合金类粉末性能基本满足成形工艺要求。但在钛合金、铝合金超细粉末制备方面存在不小距,主要问题是粉末球形度、细粉收得率低,不能满足 SLM 成形要求,使得实际应用仍依赖进口。
我国与美国、德国等 LAM 技术强国的距主要在于工艺装备。国内应用的 SLM 设备较多依赖德国进口,而大尺寸工程应用的 SLM 设备主要依靠进口。国内企业在激光器、振镜等核心部件方面缺乏自研能力,国产设备的加工尺寸、稳定性、加工精度亟待提升,有关粉末流态、熔池状态等过程与成形的国产控制软件不够完善。
3. 金属 LAM 工航发航空材料研究院完成了 LAM 技术综合研究:LDMD 制造的镍基双合金涡轮整体叶盘通过超转试验考核,增材修复的伊尔 -76 飞机起落架获得批量应用;研制了 LAM 超声扫查与评价系统,建立了检测标准与对比试块,评价和无损检测技术成果应用于飞机滑轮架、框架等装机零件的批量检测。艺研究不足
随着涡轮发动机、飞机等重要装备用材的使用性能不断提高,材料工艺性出现了下降。国内对航空主干材料的 LAM 工艺研究不足,未能形成应力变形、开裂控制等有效方法,制件内部组织缺陷的问题尚未得到根治,制件力学性能均匀一致性、批次稳定性欠佳。而先进航空发动机、高速飞行器所需的超高温结构材料的 LAM 工艺研究更为欠缺。
4. 产品尺寸精度和表面粗糙度不满足技术要求
LDMD 飞机结构件一般留有加工余量,尺寸精度和表面粗糙度不一定是关键制约因素。然而涡轮发动机零件多为带内部流道、空腔的复杂结构零件,相应 SLM 成形尺寸精度约为 0.1 mm、表面粗糙度Ra 约为 6.3,尚与精密铸件存在距。相关产品还面临着成形、内表面加工等技术研究不足的问题。
5. 金属 LAM 的指导标准欠缺
现阶段我国 LAM 行业面临的共性问题是缺少质量控制标准,使得在金属 LAM 产品的设计、材料、工艺、检测、组织性能、尺寸精度等方面缺乏验收依据。作为零件应用基础的无损检测、力学性能、冶金图谱等基本数据,由于缺乏整理而致使产品标准制定困难、产业化应用推广保障不足。
五、我国金属激光增材制造关键技术分析
开展具有自主知识产权核心器件研制,重点在于提高处理器、存储器、工业、高精度传感器、数字 / 模拟转换器等基础器件质量性能,开展工艺装备核心器件、关键部件的设计与制造;研发高光束质量激光器及光束整形系统,大功率激光扫描振镜、动态聚焦镜等精密光学器件,高精度喷嘴加工头等核心部件。
2. 扫描策略、参数规划及在线
突破数据设计、数据处理、工艺库、工艺分析及工艺智能规划、在线检测与监测系统、成形过程自适应智能控制等方面的软件技术,构建具有自主知识产权的 LAM 核心支撑软件体系。
4. 主干材料典型结构 LAM 控性与控形
针对若干关键材料及典型零件,开展 LAM 控性、控形共性关键技术、零件工程化应用的研究。掌握零件生产制造过程中影响最终质量的因素和解决措施,形成工程可用的 LAM 技术体系,涉及原材料控制、工艺设备、成形工艺、热处理、机械加工、表面处理、无损检测和验证试验等。重视LAM 零件的均匀一致性和批次稳定性,契合工程实际应用需求。
六、结语
(1)夯实激光增材制造研究基础,发挥高等院校和科研院所的技术 探索 与攻关能力。由工业部门或应用单位牵头开展产品 LAM 工艺开发和性能验证,本着先易后难原则,由常规金属逐步向金属间化合物、铌 – 硅超高温合金等先进材料方向拓展。
(2)有序推进工程化应用研究。先期在航空、航天领域选取代表性产品开展 LAM 质量控制、标准和验证工作,尽快实现产品量产和工程应用;随后逐步向结构复杂、工况苛刻、加工性的高价值产品拓展,在核工业、兵器、 汽车 、电力装备等先进制造领域推广应用。
(4)结合工业实际需求,在高等院校、职业技术学院增设 LAM 相关专业,为企业培养专业技术和技能人才。在优势技术企业内设立 LAM 培训中心,对我国诸多行业的设计人员、工艺人员和设备作人员进行专项培训,从而为 LAM 产业发展提供智力支持。
增材制造技术学什么
增材制造技术是指基于离散堆积原理,由零件三维数据驱动直接制造零件的科学技术体系。基于不同的分类原则和理解方(3)扎实开展 LAM 产品质量控制标准研究与制定。积累有关 LAM 的缺陷无损检测、力学性能、冶金图谱、疲劳寿命等基本数据,确定材料、工艺、无损检测、组织与力学性能、尺寸精度、表面粗糙度等方面验收依据,制定我国 LAM 产品技术标准。式,增材制造技术还有快速原型、快速成型、快速制造、3D打印等多种称谓,其内涵仍在不断深化,外延也不断扩展。增材制造专业又可通俗的称之为3D打印技术,相关课程都不外乎有下面这几个:工程力学、机械设计基础、材料力学、机械制图、单片机、电力拖动、液压与气压传动、数控编程与应用、auto CAD,proe、电工与电子技术、计算机原理应用、机械工程材料、制造技术基础等等。 扩展资料 所谓增材制造技术就是一种三维实体快速自由成形制造新技术,它综合了计算机的图形处理、数字化信息和控制、激光技术、机电技术和材料技术等多项高技术的优势,目前学者们对其有多种描述。西北工业大学凝固技术重点实验室的黄卫东称这种新技术为“数字化增材制造”,机械工程学会宋天虎秘书长称其为“增量化制造”,其实它就是不久前引起广泛关注的`“三维打印”技术的一种。西方媒体把这种实体自由成形制造技术誉为将带来“第三次工业革命”的新技术。
增材制造工程就业前景
增材制造工程就业前景如下:
1. 制造业领域: 在制造业中,增材制造技术可以用于原型制作、快速定制生产、零部件制造等。它能够大幅降低生产成本和周期,提高生产灵活性。因此,增材制造工程的专业人才在制造业中有着广LAM 工艺研究的关注点主要是组织性能调控,完成了较多有关 SLM 组织、缺陷、性能及其与工艺参数的关系研究。例如,对于不锈钢零件SLM,增加激光功率、降低扫描速度均有利于提高致密度 [11] ;高的表面粗糙度和孔隙率都会降低AlSi10Mg 铝合金 SLM 的耐腐蚀性能,而形成的氧化膜可提高耐腐蚀性能;AW7075 铝合金 SLM 试样内部产生垂直于增材方向的裂纹,而预热对裂纹控制无改善作用,内部裂纹导致疲劳寿命远低于传统工艺 [7] 。泛的就业机会,包括机械制造、电子制造、航空航天制造等领域。
2. 医疗领域: 增材制造技术在医疗领域的应用也十分广泛,例如可以用于制造个性化的医疗器械、肢、义以上内容参考肢、牙科矫正器等。随着人们对健康和医疗的重视,医疗领域对增材制造工程专业人才的需求也在不断增加。
4. 汽车领域: 增材制造技术可以用于汽车零部件制造、汽车原型制作以及个性化定制等。随着汽车行业的发展,对于轻量化、高性能零部件的需求也在不断增加,因此增材制造工程专业人才在汽车领域也有着广阔的就业机会。
5. 创业和自主创新: 随着增材制造技术的不断创新和发展,创业机会也在增加。很多创业者将增材制造技术应用于各种领域的创新产品开发,从而创造了新的商机和就业机会。
增材制造技术的发展历史
国内围绕 LDMD 组织、缺陷、应力变形控制等完成了较多的研究工作 [11,13,14]。航空航天大学发展了钛合金大型结构件 LDMD 内部缺陷和质量控制等关键技术 [20] 。西北工业大学完成了飞机超大尺寸钛合金缘条的 LDMD 制造,成形精度和变形控制达到较高水平。沈阳航空航天大学提出分区扫描成形方法,有效控制了 LDMD 过程零件变形和开裂。有研工程技术研究院有限公司突破了叶盘和进气道的 TC11、TA15/Ti2AlNb 异种材料界面质量控制及复杂外形一体化控制难题,产品通过试验考核。增材制造(Additive Manufacturing, AM)的历史基础几乎可以追溯到150年前,当时人们利用二维图层叠加来成型三维的地形图。20世纪60年代和70年代的研究工作验证了批现代AM工艺,包括20世纪60年代末的光聚合技术,1972年的粉末熔融工艺,以及1979年的薄片叠层技术。然而,当时的AM技术尚处于起步阶段,几乎完全没有商业市场,对研发的以上就是关于增材制造技术专业的介绍,希望能对您有所帮助!投入也很少。
到20世纪80年代和90年代初,AM相关专利和学术出版物的数量明显增多,出现了很多创新的AM技术,例如麻省理工学院的3D打印技术(3DP),与90年代的激光束熔化工艺。同一时期,一些AM技术被成功商业化,包括光固化(SL)技术、固体熔融沉积技术(FDM),以及激光烧结技术(SLS)。但是在当时,高成本、有限的材料选择,尺寸限制以及有限的精度,限制了AM技术在工业上的应用,只能用于小量快速原型件或模型的制作。
20世纪90年代和2000年代是AM的增长期。电子束熔化(EBM)等新技术实现了商业化,而现有技术得到了改进。研究者的注意力开始转向开发AM相关软件。出现了AM的专用文件格式,AM的专用软件,如Materialise的Magics开发完成。设备的改进和工艺的开发使3D增材制造产品的质量得到了很大提高,开始被用于工具甚至最终零件。
2000年代后期,金属的AM技术在众多AM技术中脱颖而出,成为了市场关注的重点。金属增材制造技术的设备,材料和工艺相互促进发展,多种不同的金属增材技术互相竞争,互相促进,不同的技术特点开始展现,应用方向也逐渐明朗。
激光增材制造技术分类?有哪些?
答:激光增材制造技术使用能源有:激光、电子束、紫外光等,采用的材料有为了在金属 LAM 技术及其工程应用方面迎头赶上,我国 LAM 的发展应遵循“技术 – 产品 – 产业”的客观规律,夯实组织性能控制技术基础,补齐核心设备在硬件 / 软件研发与集成方面的短板,强化产品质量控制、标准和验证,稳步推进产业化应用。树脂、塑料、金属、陶瓷、蜡等,因其采用的成型方法和使用的成型材料以及依靠的凝结热源不同,现在主要分为四类:分层实体制造(LOM)工艺技术;立体光刻(SLA)工艺技术;选择性激光1. 激光加工头等核心器件的设计制造烧结(SLS)工艺技术;熔融沉积成型(FDM)工艺技术。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。