反比例函数的性质总结 反比例函数性质口诀
反比例函数的性质
反比例函数性质
反比例函数的性质总结 反比例函数性质口诀
反比例函数的性质总结 反比例函数性质口诀
反比例函数的性质总结 反比例函数性质口诀
1.[增减性]当k>0时,图象分别位于、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。 定义域为x≠0;值域为y≠0。
3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。
4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|
5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即三,二四象限角平分线),对称中心是坐标原点。
6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B两点关于原点对称。
7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n^2+4k·m≥(不小于)0。
8.反比例函数y=k/x的渐近线:x轴与y轴。
9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称。
10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|
11.k值相等的反比例函数重合,k值不相等的反比例函数相交。
12.|k|越大,反比例函数的图象离坐标轴的距离越远。
13.[对称性]反比例函数图象是中心对称图形,对称中心是原点;反比例函数的图像也是轴对称图形,它的对称轴是x轴和y轴夹角的角平分线。
以上大多初中不要求掌握。初中只要求掌握一些基本的性质(即条)
2、反比例函数有如下性质:
(1)当k>0时,函数的图象在、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
关于原点对称
渐近线时x轴y轴
简单的说就是y=K/X,k>0,y随x的增加而减少;k<0,y随x的增加而增加。
K>0 一三象限
K<0 二四象限
图像是轴对称图像也是中心对称图形
初中反比例函数知识点总结
初中反比例函数知识点总结
反比例函数是函数的入门级,我们应该及时掌握好相关的知识点,下面初中反比例函数知识点总结是我想跟大家分享的,欢迎大家浏览。
初中反比例函数知识点总结 反比例函数的定义
定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
反比例函数的性质
函数y=k/x 称为反比例函数,其中k≠0,其中X是自变量,
1.当k>0时,图象分别位于、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3.x的取值范围是: x≠0;
y的取值范围是:y≠0。
4..因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。 但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴
5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即三,二四象限角平分线),对称中心是坐标原点。
反比例函数的一般形式
(k为常数,k≠0)的形式,那么称y是x的.反比例函数。
其中,x是自变量,y是函数。由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。
补充说明:1.反比例函数的解析式又可以写成: (k是常数,k≠0).
2.要求出反比例函数的解析式,利用待定系数法求出k即可.
反比例函数解析式的特征
⑴等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。
⑵比例系数
⑶自变量的取值为一切非零实数。
⑷函数的取值是一切非零实数。
;
反比例函数性质是什么?
反比例函数性质是:反比例函数 y=k/x(k为不等于0的常数)的图象是双曲线。
当k>0时,图象分别位于、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
空间域增强:
通常空间域增强可以直接对图像像素点进行处理,空间域增强可以由式所示:g(x,y)=T[f(s,y)]。
输入图像用 f (x, y)表示,增强后的图像用 g (x, y)表示,T能对图像像素进行作是增强函数,若T仅定义在像素点上,每次只对图像单个像素点处理,而与其邻域无关,则T表示的是一种点作,又称空域变换增强。
反比例函数有哪些性质
反比例函数的性质是:1,反比例函数的图像是双曲线。由于自变量取值范围为不等于0的实数,所以双曲线的的两个分支都无限靠近x轴和y轴,但与x轴和y轴不相交。 2,当比例系数k>0时,双曲线的两个分支分别在和第三象限,y随x增大而减小。当k<0时,双曲线的两个分支分别在第二和第四象限,y随x增大而增大。
初中反比例函数知识点总结大全
反比例函数的图像是以原点为对称中心的中心对称的双曲线,反比例函数图象中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交。 初中反比例函数知识点 总结 大全有哪些? 一起来看看初中反比例函数知识点总结大全,欢迎查阅!
反比例函数知识点总结
1、反比例函数的表达式
X是自变量,Y是X的函数
y=k/x=k·1/x
xy=k
y=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)
y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n
2、函数式中自变量取值的范围
①k≠0;②在一般的情况下,自变量x的'取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。
解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数
y=k/x=k·1/x
xy=k
y=k·x^(-1)
y=kx(k为常数(k≠0),x不等于0)
3、反比例函数图象
反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),
反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
4、反比例函数中k的几何意义是什么?有哪些应用?
过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的_y的=(x_y)的=|k|
研究函数问题要函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
数学反比例函数知识点归纳
y=k/x(k≠0)的图象叫做双曲线.
当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);
当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).
因此,它的增减性与一次函数相反.
以上对反比例函数知识点的讲解,相信同学们能很好的掌握了,希望同学们能很好的学习知识点。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
反比例函数性质有哪些
1.当k>0时,图象分别位于、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。定义域为x≠0;值域为y≠0。
3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。
4.在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|
5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=xy=-x(即三,二四象限角平分线),对称中心是坐标原点。
6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么AB两点关于原点对称。
7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n^2+4k·m≥(不小于)0。
8.反比例函数y=k/x的渐近线:x轴与y轴。
9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.
10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|
11.k值相等的反比例函数重合,k值不相等的反比例函数相交。
12.|k|越大,反比例函数的图象离坐标轴的距离越远。
13.反比例函数图象是中心对称图形,对称中心是原点
初中反比例函数知识点总结大全相关 文章 :
★ 初中数学反比例函数知识点
★ 反比例函数知识点整理
★ 数学反比例函数知识点
★ 反比例函数知识点
★ 反比例函数基础知识
★ 反比例函数知识点
★ 各年级数学学习方法大全
★ 初中数学知识点口诀总结2020
★ 2020初中数学知识点总结归纳
★ 初中数学知识点大全
反比例函数知识点
数学学习反比例函数要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.反比例函数知识点有哪些?一起来看看反比例函数知识点,欢迎查阅!
反比例函数的定义
定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
反比例函数的性质
函数y=k/x 称为反比例函数,其中k≠0,其中X是自变量,
1.当k>0时,图象分别位于、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3.x的取值范围是: x≠0;
y的取值范围是:y≠0。
4..因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。 但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴
5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即三,二四象限角平分线),对称中心是坐标原点。
反比例函数的一般形式
(k为常数,k≠0)的形式,那么称y是x的反比例函数。
其中,x是自变量,y是函数。由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。
补充说明:1.反比例函数的解析式又可以写成: (k是常数,k≠0).
2.要求出反比例函数的解析式,利用待定系数法求出k即可.
反比例函数解析式的特征
⑴等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。
⑵比例系数
⑶自变量的取值为一切非零实数。
⑷函数的取值是一切非零实数。
反比例函数 高一数学 知识点
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为?k?。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
反比例函数知识点 总结
1、反比例函数的表达式
X是自变量,Y是X的函数
y=k/x=k?1/x
xy=k
y=k?x^(-1)(即:y等于x的负一次方,此处X必须为一次方)
y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n
2、函数式中自变量取值的范围
①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。
解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数
y=k/x=k?1/x
xy=k
y=k?x^(-1)
y=kx(k为常数(k≠0),x不等于0)
3、反比例函数图象
反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),
反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
4、反比例函数中k的几何意义是什么?有哪些应用?
过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的_y的.=(x_y)的=|k|
研究函数问题要函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM?PN=|y|?|x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
5、反比例函数性质有哪些?
1.当k>0时,图象分别位于、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。定义域为x≠0;值域为y≠0。
3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。
4.在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|
5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=xy=-x(即三,二四象限角平分线),对称中心是坐标原点。
6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么AB两点关于原点对称。
7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n^2+4k?m≥(不小于)0。
8.反比例函数y=k/x的渐近线:x轴与y轴。
9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.
10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|
11.k值相等的反比例函数重合,k值不相等的反比例函数相交。
12.|k|越大,反比例函数的图象离坐标轴的距离越远。
13.反比例函数图象是中心对称图形,对称中心是原点
反比例函数知识点相关 文章 :
★ 初二数学反比例函数教学视频8
★ 初二数学反比例函数教学视频7
★ 初二数学反比例函数教学视频5
★ 高中数学必修一复习提纲
★ 初中数学知识手抄报
★ 初三学习数学的方法
★ 初三反比例函数知识点
★ 中考数学试卷考哪些内容
★ 初二数学反比例函数教学视频4
★ 初二数学反比例函数教学视频2
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。