几何大地测量学的内容_几何测量题
测量学的分类,大致可以分为哪些
大致可以分为以下几类
几何大地测量学的内容_几何测量题
几何大地测量学的内容_几何测量题
几何大地测量学的内容_几何测量题
大地测量学
是研究和确定地球形状、大小、重力场、整体与局部运动和地表面点的几何位置以及它们的变化的理论和技术的学科。其基本任务是建立大地控制网,测定地球的形状、大小和重力场,为地形测图和各种工程测量提供基础起算数据;为空间科学、军事科学及研究地壳变形、预报等提供重要资料。按照测量手段的不同,大地测量学又分为常规大地测量学、卫星大地测量学及物理大地测量学等。
地图制图学
是研究模拟和数字地图的基础理论、设计、编绘、的技术、方法以及应用的学科。它的基本任务是利用各种测量成果编制各类地图,其内容一般包括地图投影、地图编制、地图整饰和地图制印等分支。
摄影测量与遥感
是研究利用电磁波传感器获取目标物的影像数据,从中提取语义和非语义信息,并用图形、图像和数字形式表达的学科。其基本任务是通过对摄影像片或遥感图像进行处理、量测、解译,以测定物体的形状、大小和位置进而制作成图。根据获得影像的方式及遥感距离的不同,本学科又分为地面摄影测量学,航空摄影测量学和航天遥感测量等。
工程测量学
定义一:工程测量学是研究各项工程在规划设计、施工建设和运营管理阶段所进行的各种测量工作的学科。
各项工程包括:工业建设、、公路、桥梁、隧道、水利工程、地下工程、管线(输电线、输油管)工程、矿山和城市建设等。一般的工程建设分为规划设计、施工建设和运营管理三个阶段。工程测量学是研究这三阶段所进行的各种测量工作。
定义二:工程测量学主要研究在工程、工业和城市建设以及资源开发各个阶段所进行的地形和有关信息的采集和处理,施工放样、设备安装、变形监测分析和预报等的理论、方法和技术,以及研究对测量和工程有关的信息进行管理和使用的学科,它是测绘学在国民经济和国防建设中的直接应用。
定义三:工程测量学是研究地球空间(包括地面、地下、水下、空中)中具体几何实体的测量描绘和抽象几何实体的测设实现的理论、方法和技术的一门应用性学科。它主要以建筑工程、机器和设备为研究服务对象。
测量仪器学
研究测量仪器的制造、改进和创新的学科。
地形测量学
是研究如何将地球表面局部区域内的地物、地貌及其它有关信息测绘成地形图的理论、方法和技术的学科。按成图方式的不同地形测图可分为模拟化测图和数字化测图。
大地测量学的分支
大地测量学已经属于二级学科了,不清楚是否又其他分支,
更细化的研究方向的话,比如现在的比较前沿的似大地水准面精化,甚长基线干涉测量,地球椭球体模型的建模,坐标系统坐标框架的理论研究和实现,等等
测量学基础的应用
大地测量学中测定地球大小,指测定地球椭球的大小;研究地球形状,指研究大地水准面形状;测定地面点的几何位置,指测定以地球椭球面为参考的地面点位置。将地面点沿法线方向投影于椭球面上,用投影点在椭球面上的大地经度、大地纬度表示点的水平位置,用地面点至投影点的法线距离表示该点的大地高程。这点的几何位置也可以用一个以地球质心为原点的空间直角坐标系中的三维坐标表示。大地测量工作为大规模的测制地形图提供水平控制网和高程控制网;为开发矿山、兴修水利、发展交通等经济建设提供控制基础;为发射和航天器提供地面点的坐标和地球重力场数据;为地球物理学、地球动力学、学的研究任务提供测量数据。简史 大地测量学历史悠久。公元前3世纪,的埃拉托色尼利用在两地观测日影的方法,首次推算出地球子午圈的周长,也是弧度测量的初始形式。724年 ,唐代的南宫说等人在张遂(一行)指导下在今河南省境内实测了一条长约300千米的子午弧,并测同一时刻南北两点的日影长度,推算出纬度1°的子午弧长。这是世界上次实测弧度测量。其他也相继进行过类似的工作。17世纪以前,由于工具简单,技术水平低,所得结果精度不高。1617年荷兰W.斯涅耳首创三角测量法,克服了直接丈量距离的困难。随后又有望远镜、水准器、测微器等的发明,测量仪器制造逐渐完善,精度提高,为大地测量学的发展奠定了技术基础。17世纪末,英国I.牛顿和荷兰C.惠更斯从力学观点研究地球形状,提出地球是两极略扁的椭球体。1735~1741年法国科学院派两支测量队分别在赤道附近的秘鲁和北极圈附近的拉普兰进行弧度测量,证实地球是两极略扁的椭球体。清代康熙年间为编制《皇舆全图》,实施了大规模天文大地测量。这次测量中,发现高纬度的东北地区每度子午弧比低纬度的河北地区的要长,这个发现比法国早。1730年英国西森发明经纬仪,促进了三角测量的发展。1743年法国克莱罗发表了《地球形状理论》,指出用重力测量求定地球扁率的方法。1806年法国的A.-M.勒让德和1809年德国的C.F.高斯分别发表了小二乘法理论,产生了测量平法。1849年英国Sir G.G.斯托克斯创立用重力测量成果研究水准面形状的理论。1880年瑞典耶德林提出悬链线状基线尺测量方法,继而法国制成因瓦基线尺,使丈量距离的精度明显提高。19世纪末和20世纪30年代,先后出现了摆仪和重力仪,使重力点数量大量增加,为研究地球形状和地球重力场提供大量重力数据。1945年的M.C.莫洛坚斯基提出,不需要任何归算,可以直接利用地面重力测量数据严格求定地面点到参考椭球面的大地高程,直接确定地球表面形状,这一理论已被许多采用。20世纪40年代,电磁波测距仪的发明,克服了量距的困难,使导线测量、三边测量得到重视和发展。1957年颗人造地球卫星发射成功后,产生了卫星大地测量学,使大地测量学发展到一个新阶段。导航卫星多普勒定位技术,能够以±1米或更高的精度测定任一地面点在全球大地坐标中的地心坐标。卫星雷达测高技术,可测定海洋大地水准面的起伏。新发展起来的卫星射电干涉测量技术,可以测定地面上相距几十千米的两点间的基线向量在全球坐标系三轴方向上的基线分量,即两点间的3个坐标。卫星大地测量学仍在发展中,具有很大的潜力。分支 大地测量学包括几何大地测量学、物理大地测量学、卫星大地测量学、海洋大地测量学和动态大地测量学。几何大地测量采用一个与地球外形接近的旋转椭球代表地球形状,用几何方法测定它的形状和大小,并以该椭球面为参考研究和测定大地水准面,以及建立大地坐标系,推算地面点的几何位置。物理大地测量用一个同全球平均海水面位能相等重力等位面即大地水准面代表地球的实际形状,在地球表面进行重力测量,并用地面重力测量数据研究大地水准面相对于地球椭球面的起伏。卫星大地测量利用卫星在地球引力场中的轨道运动,从尽可能均匀分布在整个地球表面上的十几个至几十个跟踪站,观测至卫星瞬间位置的方向、距离或距离,积累对不同高度不同倾角的卫星的长期(数年)观测资料,可以综合解算地球的几何参数和物理参数,以及地面跟踪站相对于地球质心的几何位置。
几何大地测量学的测定
为了测定地面点的几何位置所进行的几何大地测量,分为水平控制测量和高程控制测量。水平控制测量方法有三角测量、三边测量和导线测量;高程控制测量方法有水准测量和三角高程测量。一个的水平和高程控制测量都布设成网状,分别称为大地网和水准网。
大地测量学的基本技术有哪些?
大地测量学首先要有扎实透彻的理论知识基础。然后才是外业实测技能。这里面包括了GPS测量,常规仪器测量,还有重力测量,等等吧。没有一个具体的范围。必须对坐标系的相关知识理解清楚哦。
学会使用测量仪器,比如RTK啥的
测绘学的研究内容
测绘学的主要研究对象是地球及其表面的各种形态。为此,首先要研究和测定地球的形状、大小及其重力场,并在此基础上建立一个统一的坐标系统,用以表示地表任一点在地球上的准确几何位置。地球的外形非常近似于一个椭球,在测绘学中即用一个同地球外形极为接近的旋转椭球来代表地球,称为地球椭球。地面上任一点的几何位置即用这点在地球椭球面上的经纬度和点的高程表示。测绘学中研究测定地球形状及地球重力场,地球椭球参数,以及地面点的几何位置的理论和方法的这一分支学科称为大地测量学。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。