今天小蚪来给大家分享一些关于锐角三角比表格口诀方面的知识吧,希望大家会喜欢哦

锐角三角比的值 表格 锐角三角比表格口诀锐角三角比的值 表格 锐角三角比表格口诀


锐角三角比的值 表格 锐角三角比表格口诀


锐角三角比的值 表格 锐角三角比表格口诀


锐角三角比的值 表格 锐角三角比表格口诀


1、(1)特殊角三角函数值sin0=0sin30=0.5sin45=0.7071 二分之根号2sin60=0.8660 二分之根号3sin90=1cos0=1cos30=0.866025404 二分之根号3cos45=0.707106781 二分之根号2cos60=0.5cos90=0tan0=0tan30=0.577350269 三分之根号3tan45=1tan60=1.732050808 根号3tan90=无cot0=无cot30=1.732050808 根号3cot45=1cot60=0.577350269 三分之根号3cot90=0(2)0°~90°的任意角的三角函数值,查三角函数表。

2、(见下)(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°0, cotα>0.“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。

3、从《数学课程标准》看,中学数学把三角学内容分成两个部分,部分放在义务教育第三学段,第二部分放在高中阶段。

4、在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。

5、在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。

6、无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。

7、附:三角函数值表sin0=0,sin15=(√6-√2)/4 ,sin30=1/2,sin45=√2/2,sin60=√3/2,sin75=(√6+√2)/2 ,sin90=1,sin105=√2/2(√3/2+1/2)sin120=√3/2sin135=√2/2sin150=1/2sin165=(√6-√2)/4sin180=0sin270=-1sin360=0完整初中三角函数值表如下图所示:常见的三角函数包括正弦函数、余弦函数和正切函数。

8、在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。

9、不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。

10、扩展资料:起源公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。

11、尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。

12、三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更的正弦表。

13、我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。

14、印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。

15、印度人称连结弧(AB)的两端的弦(AB)为”吉瓦()”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。

本文到这结束,希望上面文章对大家有所帮助。