抛物线的方程是什么?

抛物线标准方程:y2=2px

抛物线的标准方程公开课 抛物线的标准方程公开课视频抛物线的标准方程公开课 抛物线的标准方程公开课视频


抛物线的标准方程公开课 抛物线的标准方程公开课视频


它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2。

由于抛物线的焦点可在任意半轴,故共有标准方程y2=2px,y2=-2px,x2=2py,x2=-2py。

扩展资料特点

在抛物线 y2=2px 中,焦点是 (p/2,0),准线的方程是x=-p/2 ,离心率e=1 ,范围:x>=0

抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。 抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。

抛物线标准方程式

希望这些能帮助你学习 1.理解障碍 (1)对抛物线定义的理解 平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.抛物线的定义可以从以下几个方面理解、掌握: (i)抛物线的定义还可叙述为:“平面内与一个定点F和一条定直线l的距离的比等于1的点的轨迹叫做抛物线.”这样与椭圆、双曲线有统一的第二定义. (ii)定义的实质可归结为“一动三定”,一个动点,设为M;一个定点F,叫做抛物线的焦点;一条定直线l,叫做抛物线的准线;一个定值,即点M与点F的距离和它到直线l的距离之比等于1. (iii)定点F不在定直线l上,否则动点M的轨迹不是抛物线,而是过点F垂直于直线l的一条直线.如,到点F(1,0)和到l:x+y-1=0的距离相等的点的轨迹方程为x-y-1=0,轨迹是一条直线. (2)对抛物线标准方程的理解 抛物线标准方程的特点在于:等号一边是某变元的完全平方,等号另一边是另一变元的一次项,这种形式和它的位置特征相对应.若对称轴为x轴,方程中的一次项就是x的一次项,且符号指出了抛物线的开口方向,即:开口向右时,该项取正号;开口向左时,该项取负号. 若对称轴为y轴,则方程中的一次项就是y的一次项,且符号指示了抛物线的开口方向,即:开口向上时,该项取正号;开口向下时,该项取负号. 2.解题障碍 (1)对抛物线定义应用不够灵活 抛物线的定义中指明了抛物线上的点到焦点的距离与到准线距离的等价性,故二者可以相互转化,这一转化在解题中有着重要作用. (2)对标准方程的应用不准确 由于抛物线标准方程有四种,在应用时易混淆.故需加强对标准方程的感性认识,记准标准方程与抛物线之间的对应关系. 【学习策略】 1.定义的应用 由于当定点在定直线上时,到定点距离等于到定直线距离的点的轨迹为一条直线而不是抛物线,故利用定义判断轨迹时应先验证定点是否在定直线上. 定义在抛物线题目中有着广泛的应用,要注意定义的转化作用的应用. 2.待定系数法 尽管抛物线标准方程有四种,但方程中都只有一个待定系数,一是利用好参数p的几何意义,二是给抛物线定好位,即求抛物线方程也遵循先定位,后定量的原则. 3.统一方程 对于焦点在x轴上的抛物线的标准方程可统一设为y2=ax(a≠0),a的正负由题设来定,即不必事先限定a的正负,也就是说,不必设为y2=2px或y2=-2px(p>0),这样能减少计算量.同理,焦点在y轴上的抛物线的标准方程可统一设为x2=ay(a≠0). 【例题分析】 〔例1〕求适合下列条件的抛物线的标准方程: (1)过点(-3,2); (2)焦点在直线x-2y-4=0上. 策略:根据已知条件求出抛物线的标准方程中的p即可,注意标准方程的形式. 解:(1)设抛物线方程为y2=-2px或x2=2py(y>0),将点(-3,2)代入方程得2p= 或2p= , ∴所求抛物线方程为y2=- x或x2= y. (2)令x=0,由方程x-2y-4=0得y=-2. ∴抛物线的焦点为F(0,-2). 设抛物线方程为x2=-2py,则由 =2,得2p=8, ∴所求的抛物线方程为x2=-8y. 或令y=0,由x-2y-4=0得x=4,∴抛物线焦点为F(4,0). 设抛物线方程为y2=2px,由 =4得p=8.则所求方程为y2=16x. 总之,所求抛物线方程为x2=-8y或y2=16x. 评注:此两小题都有两解,注意不要丢解.做题前可先画草图,全面考查已知条件.本题都采用了待定系数法求解,要注意解题方法和技巧.

抛物线的定义与标准方程

抛物线的定义

(1)定义

平面内与一个定点F和一条定直线的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.抛物线的定义也可以说成是:平面内与一个定点F和一条定直线l的距离的比等于1的点的轨迹.

(2)规律总结

①在抛物线的定义中,定点F不在直线l上,否则动点的轨迹就是过点F且垂直于直线l的一条直线,而不再是抛物线.

②抛物线的定义指明了抛物线上的点到焦点的距离与到准线的距离相等,故在一些问题中,二者可以互相转化,这是利用抛物线定义解题的关键.

2、抛物线的有关概念

定义

图形

抛物线的弦、焦点弦

连接抛物线上任意两点的线段,叫做抛物线的弦.

过抛物线焦点的弦,叫做抛物线的焦点弦

抛物线的通径

过焦点且垂直于抛物线对称

轴的弦叫做抛物线的通径

焦半径

抛物线上一点P和焦点的连

线叫做点P的焦点半径或焦

半径

抛物线的焦准距

抛物线的焦点和它的准线间的距离,叫做焦准距.

依据定义,显然有

,,即焦准距等于通径长的一半.焦准距用常数p表示

3、抛物线的标准方程

标准方程

图形

焦点

准线方程

①抛物线的标准方程是指抛物线在标准状态下的方程,即顶点在原点,焦点在坐标轴上.

②抛物线的标准方程中的系数p叫做焦参数,它的几何意义是:焦点到准线的距离焦点到顶点以及顶点到准线的距离均为.

③抛物线的标准方程有四种类型,所以判断其类型是解题的关键.在方程的类型已确定的前提下,因为标准方程只有一个参数p,所以只需一个条件就可以确定一个抛物线的方程

④对上面表示的四种位置不同的抛物线和它们的标准方程进行对比、分析,得出其异同点.共同点:

a.原点在抛物线上;

b.焦点都在坐标轴上;

c.准线与焦点所在坐标轴垂直,垂足与焦点关于原点对称,它们与原点的距离都等于一次项系数的的,即.

不同点:

a.焦点在x轴上时,方程的右端为,左端为;焦点在y轴上时,方程的右端为,左端为;

b.开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(或y轴)的正半轴上,方程的右端取正号;开口方向与x轴(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号.

4、抛物线的性质

标准方程

图形

顶点

对称轴

x轴

y轴

焦点

准线方程

位置特征

抛物线在y轴右侧,当x增大时,也增大

抛物线在y轴左侧,当x减小时,增大

抛物线在x轴上方,当y增大时,也增大

抛物线在x轴下方,当y减小时,增大

离心率

焦准距

p通径长

2p

焦参数

p的焦半径

5、抛物线的焦点弦的性质

如图,AB为抛物线的焦点弦,.焦点,准线,,,且M,N分别为AB,CD的中点,则

(1),;

(2),,;

(3) (为AB的倾斜角);

(4)直角梯形ABDC的对角线交于原点O,且;

(5)MN被抛物线平分,即R为MN的中点;

(6);

(7)(定值);

(8)以AB为直径的圆必与准线相切.

6、关于抛物线的几个重要结论

(1)弦长公式同椭圆

(2)对于抛物线,我们有在抛物线内部;在抛物线外部.

(3)过抛物线上的点的切线方程是.

抛物线的斜率为k的切线方程是.

(4)若过抛物线上两点,的两条切线交于点,则,.

抛物线方程公式大全_高中数学“抛物线及其标准方程”说课设计

“说课”是新课程理念倡导下的一种新型教研活动,说课教师在规定的时间内,把自己对一节课的教学设想及设计讲述出来。说课的对象是教师,“说课”所构建的平台,给了我们从事教学活动的教师一个交流的机会。

一、教材分析

在这一章的三种圆锥曲线椭圆、双曲线、抛物线中,抛物线被安排在,抛物线体现圆锥曲线的共性和个性,并且由它构建整章的知识网络,形成知识体系。在高考试卷中往往以选择题、填空题和解答题的形式出现。本节的重点是抛物线定义和抛物线标准方程的建立,难点是求抛物线的标准方程和四种标准方程的应用。针对以上的重点和难点,在 教学设计 时又充分考虑到教学对象是普通高中学生这一点,对教材作适当调整:对例题1,由于初学者对多种抛物线形式易混,必须及时做双向的练习加以巩固,即由方程到焦点、准线,再由焦点、准线到方程。在理解、掌握和强化中完成目标。对例题2则放在课堂小结之后,作为研讨题加强变式练习。例题3则放在下一小结中,系统学习抛物线的弦长问题时解决,它也是本节的一个重点。

二、教学目标

①使学生掌握抛物线的定义及其标准方程;②会用解析几何的坐标法建立抛物线的标准方程;③理解标准方程中参数P的几何意义,能根据条件求抛物线的标准方程,并会由标准方程求相应的准线方程、焦点坐标,画出其图形;④培养学生的数形结合思想及主动探究精神,提高学生的分析、对比和概括能力。

三、教学方法

依据新课程理念倡导的“自主、探究、合作、交流”的学习方式,结合本课教材的特点和学生的实际情况。我采用了“启发探究式”的教学方法。在椭圆、双曲线的学习中,学生已经尝试了求曲线方程的方法,因此完全可以用类比的方法,亲身体会数学知识的发生、发展过程。“探究式”学习方式是一种流行的教学方式,但如何做到“实质性”探究,不流于形式,是我们值得深思的一个问题。教师只有提高自身的数学素养,理解数学本质,挖掘“本原性”问题,才能驾驭真正的“探究”。如在本节课的“XOY”坐标系的建立中,原点的选取就是核心和本原性问题,必须抓住这一“探索”契机。

四、教学过程

教学过程设计分为四个阶段

1.引入阶段

通过对椭圆、双曲线的离心率的归纳,提出学习课题。

由椭圆、双曲线的离心率e的变化范围进入本节教学课题。老师问:当e=1时是何种圆锥曲线?学生很快就能回答。这既体现了三种圆锥曲线的完整性,又能体现抛物线动点到定点和定直线的距离相等而不再是一个取值范围的特殊性。

2.探索阶段

一方面通过多媒体课件演示抛物线形成过程得出定义,另一方面用坐标法研究得出抛物线的标准方程。 首先通过多媒体课件来演示抛物线的形成过程,进而归纳得出定义:先固定一根直尺,让三角板的一条直角边紧靠直尺边缘,确定绳长AC,并且固定两端点A和F点使笔尖即P点紧靠直尺边缘,当三角尺上下滑动时得到曲线,而在这一过程中,实质性的关系是|CP|=|CF|,即动点到定点和直线的距离相等,归纳出抛物线定义。F叫抛物线的焦点,L叫抛物线的准线。以上的探索要转化为具体的知识,即数和形,学生进入探究过程。第二,老师在黑板上演示建立适当的直角坐标系,求抛物线的标准方程:有一条定直线和一个定点.学生自然可以想到,使x轴过定点F与L垂直,K为垂足及|KP|=P,而下一步原点的选取关系到y轴,学生会有以下三种探究思路:①原点在K点,②原点在F点,③原点在KP的中点。学生依据初中关于抛物线的知识完全可以正确判断。求三种相应的标准方程,可以分组或指定三人分别去完成,在这一过程中,探究的目的除了得到y2=2px(p>0)外,更深一层要培养学生用坐标法研究问题的能力,它也是解析几何的精髓。第三,老师进一步启发学生提出问题,还有哪些形式的抛物线?让学生借助于类比、联想完成老师给出的四种标准方程表格得到初步结论:①一次项系数正负决定开口方向,②焦点坐标为一次项系数的1/4(在这里再次强化P的几何意义)。

3.应用阶段

通过对例题的分析、求解及双向练习,使学生掌握四种标准方程的应用。

通过对例题1的分析,配置双向习题,即由标准方程求焦点坐标、准线方程,或由焦点坐标、准线方程求标准方程,使学生在理解、掌握、强化中完成教学目标。

4.小结结阶段

学生对所学知识和方法进行梳理。

由教师学生共同陈述下列概念:①抛物线定义,②抛物线四种标准方程,③P的几何意义;④升华对抛物线的认识。然后教师总结:抛物线在物理中是斜抛物体的运动轨道,在初中及高一的函数一章中,与开口向上、向下的抛物相关的知识点是定义域、值域、单调性和值,而在解析几何中我们突破函数的限制,从更一般的意义上,以数与式为基础,用代数知识研究几何问题,即“坐标法”。尽管都是抛物线但研究问题的角度和方法不同。

(编辑:张华伟)

抛物线有哪几个标准方程式?

抛物线标准方程:

y2 =2px(p>0)(开口向右);

y2 =-2px(p>0)(开口向左);

x2 =2py(p>0)(开口向上);

x2 =-2py(p>0)(开口向下);

焦点坐标为(p/2,0)

共同点:

1、原点在抛物线上,离心率e均为1 ;

2、对称轴为坐标轴;

3、准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的的1/4。

扩展资料:

对于抛物线y1=2px,p>0时,定义域为x≥0,p<0时,定义域为x≤0;对于抛物线x1=2py,定义域为R。

值域:对于抛物线y1=2px,值域为R,对于抛物线x1=2py,p>0时,值域为y≥0,p<0时,值域为y≤0。

抛物线标准方程:y1=2px

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2。

由于抛物线的焦点可在任意半轴,故共有标准方程y1=2px,y1=-2px,x1=2py,x1=-2py。

参考资料来源:

抛物线标准方程是什么样的?

二次项的系数为正时,开口向上; 二次项的系数为负时,开口向下。

1.标准方程

右开口抛物线:y^2=2px(p>0)

左开口抛物线:y^2=2px (p<0)

上开口抛物线:y=x^2/2p (p>0)

下开口抛物线:y=x^2/2p (p<0)

2.相关参数对于向右开口的抛物线

离心率:e=1

焦点:(p/2,0)

准线方程l:x=-p/2

顶点:(0,0)

通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2P

3.p为焦准距(p>0)

在抛物线y^2=2px中,焦点是(p/2,0),准线l的方程是x= -p/2; 在抛物线y^2= -2px 中,焦点是( -p/2,0),准线l的方程是x=p/2; 在抛物线x^2=2py 中,焦点是(0,p/2),准线l的方程是y= -p/2; 在抛物线x^2= -2py中,焦点是(0,-p/2),准线l的方程是y=p/2。

抛物线的标准方程是什么

抛物线标准方程:y2=2px。

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2。由于抛物线的焦点可在任意半轴,故共有标准方程y2=2px,y2=-2px,x2=2py,x2=-2py。

周期性:周期性主要运用在三角函数及抽象函数中,是化归思想的重要手段。求周期的重要方法:

①定义法。

②公式法。

③图像法。

④利用重要结论:若函数f(x)满足f(a-x)=f(a+x),f(b-x)=f(b+x),a≠b,则T=2b-2a。

函数的通性:

(1)奇偶性:函数定义域关于原点对称是判断函数奇偶性的必要条件,在利用定义判断时,应在化简解析式后进行,同时灵活运用定义域的变形,如f(-x)。f(x)=0, (f(x)≠0)。奇偶性的几何意义是两种特殊的图像对称。

(2)单调性:研究函数的单调性应结合函数单调区间,单调区间应是定义域的子集。