比例的意义 洋葱

教学内容:人教版六年级下册40-41页。

洋葱数学微课比例的意义教学设计介绍如下:

用比例解决问题教学设计 用比例解决问题教学设计及反思用比例解决问题教学设计 用比例解决问题教学设计及反思


用比例解决问题教学设计 用比例解决问题教学设计及反思


教材分析:《比例的意义和基本性质》是人教版数学六年级下册第四单元的内容。在此之前,同学们已经学习了比的知识和除法、分数、方程知识等的基础内容。本节课内容是这个单元的节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的,是本单元的基础与核心,是后续学习的有效支持。

比例的意义是学习正比例,反比例知识和用比例解决问题的基础,必须让学生深刻理解,牢固掌握,比例的基本性质和解比例和进一步研究比例问题的基础,直接涉及解决问题的效率。学生学好这部分知识,不仅可以初步接触函数的思想,可以用来解决日常生活中一些具体的问题,而且有利于学生完善认知结构,提升学习水平,进一步牢固掌握基础知识和基本技能。

有利于促进学生积累基本的数教学比例各部分的名称。学活动经验和掌握基本的数学思想方法。

学情分析

比例的意义和基本性质是在学生掌握了比的基本性质的基础上进行教学的。本班学生的基础不牢固,所以本节内容的学习,需要花部分时间回顾比,除呈现自学提示:法,分数的知识。

要使学生记住比例概念的描述,更重要的是理解概念,而理解概念,关键是要理解知识的本质和要素,“比列”的本质是一个等式,描述的是两个比值相等的比之间的关系,教学中要多给学生提供有效的材料,让学生判断、思考并表达思维过程,促进理解,为后续学习作好铺垫,还要进一步发展学生的空间观念和抽象思维能力,为进一步学习打下基础。

【教学目标】

1、知识与技能:使学生理解比例的意义和基本性质,能正确判断两个比是否能组成比例。

2、过程与方法:通过探究、概括归纳、讨论、合作学习,结合洋葱数学微课视频,培养学生抽象概括能力。

【教学重点与难点】

教学重点:正确理解比例的意义,掌握比例的基本性质。

教具准备:课件,洋葱数学微课视频

将洋葱微课视频发在家长群,让孩子提前学习,明确学习内容。

复习导入

1.让学生回顾比的意义。并且用课件展示洋葱数学微课视频的截图。

提出问题:同学们已经学习过比,会求比的比值。那么通过昨天微课视频的学习,同学们能不能说出什么是比例呢?

同时,课件继续展示。

一大堆比的比值相等,意味着什么?

同学讨论过后举手发言

生:比值相等的两个比,说明它们可以组成比例。

师:这就是我们今天学习的个内容,比例的意义。

板书比例的意义:表示两个比相等的式子叫做比例。可以写成a :b=c : d的形式。也可以写成a/b=c/d的形式。

师:那么利用比例的意义,我们如何来判断两个比是否可以组成比例呢?从微课视频中,你知道怎么判断吗?

生:看两个比的比值是否相等,如果相等,这两个比就能组成比例。如果不相等,则不能组成比例。

师,是的,那么我们来看一看书上第40页,“做一做”题。

师生练习。

教师:我们还能不能找到其他的方法来判断两个比是否可以组成比例呢?

同学们回忆一下洋葱视频,认识比例的各部分。

指名让学生指出板书的比例的外项、内项。随着学生的回答教师接着板书。

教师板书:

学生认一认,说一说课件出示比例中的外项和内项。

探究比例的基本性质。

教师:我们知道了比例的各部分的名称,那么比例有什么性质呢?现在我们就来探究一下。

昨天微课视频中的黑心公爵是怎么找到用更简单的方法的?

教师板书:比例的基本性质。

洋葱视频中讲解了内项积和外项积的关系。

组织学生观察组成比例的两个内项和两个外项,并探究它们的关系。

学生小组内交流。

点名小组代表,说其找到的规律。

验证其他的比例有没有这个规律,举例说明,检验发现。

可以得到结论:外项的积等于内项的积。如果把比例改成分数形式呢?等号两边的分子和分母分别交叉相乘,所得的积相等。

教师:这个规律叫做比例的基本性质。学生说一说,比例的基本性质是什么?组织学生小组交流、汇报。

教师补充并板书:在比例里,两个外项之积等于两个内项之积,这叫做比例的基本性质。学生齐读两遍。

应用比例的基本性质,判断哪两个比可以组成比例。

比例的意义 洋葱

师:同学们真是很棒!通过自学能够感受到用比例解决问题的步骤,这次老师想考考你们是不是真正的掌握了?你们敢应战吗?

洋葱数学微课比例的意义教学设计介绍如下:

教材分析:《比例的意义和基本性质》是人教版数学六年级下册第四单元的内容。在此之前,同学们已经学习了比的知识和除法、分数、方程知识等的基础内容。本节课内容是这个单元的节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的,是本单元的基础与核心,是后续学习的有效支持。

比例的意义是学习正比例,反比例知识和用比例解决问题的基础,必须让学生深刻理解,牢固掌握,比例的基本性质和解比例和进一步研究比例问题的基础,直接涉及解决问题的效率。学生学好这部分知识,不仅可以初步接触函数的思想,可以用来解决日常生活中一些具体的问题,而且有利于学生完善认知结构,提升学习水平,进一步牢固掌握基础知识和基本技能。

有利于促进学生积累基本的数学活动经验和掌握基本的数学思想方法。

学情分析

比例的意义和基本性质是在学生掌握了比的基本性质的基础上进行教学的。本班学生的基础不牢固,所以本节内容的学习,需要花部分时间回顾比,除法,分数的知识。

要使学生记住比例概念的描述,更重要的是理解概念,而理解概念,关键是要理解知识的本质和要素,“比列”的本质是一个等式,描述的是两个比值相等的比之间的关系,教学中要多给学生提供有效的材料,让学生判断、思考并表达思维过程,促进理解,为后续学习作好铺垫,还要进一步发展学生的空间观念和抽象思维能力,为进一步学习打下基础。

【教学目标】

1、知识与技能:使学生理解比例的意义和基本性质,能正确判断两个比是否能组成比例。

2、过程与方法:通过探究、概括归纳、讨论、合作学习,结合洋葱数学微课视频,培养学生抽象概括能力。

【教学重点与难点】

教学重点:正确理解比例的意义,掌握比例的基本性质。

教具准备:课件,洋葱数学微课视频

将洋葱微课视频发在家长群,让孩子提前学习,明确学习内容。

复习导入

1.让学生回顾比的意义。并且用课件展示洋葱数学微课视频的截图。

提出问题:同学们已经学习过比,会求比的比值。那么通过昨天微课视频的学习,同学们能不能说出什么是比例呢?

同时教学难点:应用比例的意义、比例的基本性质 两种方法判断两个比能否组成比例,正确地组成比例,并且能够区分两种方法。,课件继续展示。

一大堆比的比值相等,意味着什么?

同学讨论过后举手发言

生:比值相等的两个比,说明它们可以组成比例。

师:这就是我们今天学习的个内容,比例的意义。

板书比例的意义:表示两个比相等的式子叫做比例。可以写成a :b=c : d的形式。也可以写成a/b=c/d的形式。

师:那么利用比例的意义,我们如何来判断两个比是否可以组成比例呢?从微课视频中,你知道怎么判断吗?

生:看两个比的比值是否相等,如果相等,这两个比就能组成比例。如果不相等,则不能组成比例。

师,是的,那么我们来看一看书上第40页,“做一做”题。

师生练习。

教师:我们还能不能找到其他的方法来判断两个比是否可以组成比例呢?

同学们回忆一下洋葱视频,认识比例的各部分。

指名让学生指出板书的比例的外项、内项。随着学生的回答教师接着板书。

教师板书:

学生认一认,说一说课件出示比例中的外项和内项。

探究比例的基本性质。

教师:我们知道了比例的各部分的名称,那么比例有什么性质呢?现在我们就来探究一下。

昨天微课视频中的黑心公爵是怎么找到用更简单的方法的?

教师板书:比例的基本性质。

洋葱视频中讲解了内项积和外项积的关系。

组织学生观察组成比例的两个内项和两个外项,并探究它们的关系。

学生小组内交流。

点名小组代表,说其找到的规律。

验证其他的比例有没有这个规律,举例说明,检验发现。

可以得到结论:外项的积等于内项的积。如果把比例改成分数形式呢?等号两边的分子和分母分别交叉相乘,所得的积相等。

教师:这个规律叫做比例的基本性质。学生说一说,比例的3、情感态度与价值观:使学生初步感知事物间是相互联系、变化发展的。在总结比例的基本性质的过程中,感受到探索数学问题的乐趣。基本性质是什么?组织学生小组交流、汇报。

教师补充并板书:在比例里,两个外项之积等于两个内项之积,这叫做比例的基本性质。学生齐读两遍。

应用比例的基本性质,判断哪两个比可以组成比例。

用比例解决问题与算术方法有何区别

学生自学教材的相关内容。

《用比例解决问题教学设计》

教学目标:8即时练习

知识与技能:

1、使学生进一步熟练地判断成正反比例的量,加深对正反比例概念的理解。

2、使学生能利用正反比例的意义解答比较简单的应用题,巩固和加深对所学的简易方程的认识。

3、培养学生的分析、判断和推理能力。

过程与方法:

经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。

情感态度和价值观:

感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

教学重点:用比例知识解决实际问题

教学难点:能够正确分析题中的比例关系,列出方程

一、复习铺垫,引入新课。

师:同学们,我们已经学习了哪两种比例?好,下面我们就来回忆一下有关正、反比例的知识。

师:你能准确地判断两个量之间的关系吗?下面我们来进行一个回合的抢答比拼:我会判断。(抢答要求:举手证明你有勇气,你会做,你没有抢答到但是你的手势判断正确,你仍然是最棒的。)

出示:下面每题中的两种量成什么比例?

(1)速度一定,路程和时间.

(2)路程一定,速度和时间.

(3)单价一定,总价和数量.

(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.

(5)全校学生做,每行站的人数和站的行数.

二、探究新知

(一)用正比例的知识解决问题(探究例5)

1、师:(对于学生回答教师给予肯定)看样子同学们掌握的很不错,那么,学习了正反比例到底有什么用呢?(学生交流)来我们一起看看这节课的学习目标吧!

出示学习目标:

1、进一步熟练地判断成正反比例的量,加深对正反比例概念的理解。

2、能利用正反比例的意义解答比较简单的应用题,掌握用比例知识解答问题的步骤和方法。

2、过渡语:学习知识就是为了解决问题,你能运用学过的知识去解决生活中的问题吗?看,李大妈和张奶奶在讨论什么问题,想不想去看看!(出示情境图)

(让学生读李大话进行体会,主要让学生体会到通过李大妈叙述的两个条件挖出隐含条件每吨水的价格以及水费和用水吨数之间的联系,感受水的单价一定)

师:这幅图中你能知道哪些信息?你能不能运用学过的方法来帮李奶奶解决这个问题?看谁帮李奶奶解决这个问题!

学生自己解答,然后交流解答方法。

师:除了这种方法我们还可以用什么方法来解决了?

生:比例

3、引入新课:对,像这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题

4、师:通过大家的表情,好像老师不用教,大家都敢尝试。大家敢不敢自己试试?(相信学生,鼓励他们运用已有的知识去获取新的知识,培养他们主动学习的意识,培养学生的自学能力体现教是为了不教。)

(1)题中有哪两种相关联的量?

(2)这两种相关联的量成什么比例关系?你是怎么判断的?

(3)你能根据这样的比例关系列出一个含有未知数的比例式吗?

5、学生交流自学结果,相互补充,呈现一个完整的解答过程。、

师:谁来说说你是怎样用比例知识来解决问题的?

根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

生说出等量关系:水费∶吨数=水费∶吨数,然后尝试解答。

6、师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。)

7、师:比较这两种解法,你们觉得哪种方法更好理解?看来,我们在解决问题时,不光可以从不同角度思考,找到不同的解决方法,而且还要善于选择化的方法。当然,没有要求时,用什么方法都可以,但要求用比例解时必须用比例。

过渡语:同学们帮助李奶奶解决问题,李奶奶把大家认真学习,帮助她解决问题的事情告诉了邻居王大爷,李大爷正为上个月交了19.2元的水费但算不出用水都少吨而犯愁,就急匆匆地赶过来向大家请教,大家愿意帮帮他吗?

出示对话情景。

师:观察帮助要王大爷的问题和帮助李事对比,你有什么发现?

在学生的交流中逐步认识到这道题与例5相比,条件和问题改变了,但题目中水费和用水的吨数的正比例关系没变。

师:这次还需不需要老师给你一个解决问题的提示?

一名同学在黑板上做,其余在下面做,形成一个竞赛的形式。演板的同学和大家交流自己的做题过程,教师进行鼓励和评价。

9、师:上面两道题就是用正比例解决问题,通过大家亲身实践,你感受到用正比例解决问题需要几个步骤吗?

(出示:表达是我的强项,让学生从学习提示、解决问题中逐步提炼归纳出自己做法,交流中逐步培养他们的表达能力。)

那么我们进行下一个环节:对比发现超越自我。

(二)用反比例的知识解决问题(学习P60例6)

师:解决了李奶奶、王大爷家的问题,下面的几个工人也遇到了问题,我们一起看一下吧。

1课件出示情境图,了解题目条件与问题

师:关于这个问题,同学们可以参考例5的学习经验来解决,看谁能用不同的方法来解决这个问题?

生:解决,并在小组交流解题思路和计算方法

师:谁来说说做这道题的解题思路(指名回答)

学情预设:一般的方法是:有的同学用算术方法,有的同学能用反比例的方法解决这个问题,如30x=20×18,x=12。

师:(教师手指30x=20×18,x=12。【教学过程】)为什么这样列式?根据是什么?

学情预设:估计学生能说出列式根据,因为书的总数一定,所以包数和每包的本数成反比例.也就是说,每包的本数和包数的乘积相等。

2.即时练习

(课件出示:)如果要捆15包,每包多少本?

师:会解决吗?

生:解决,交流订正。

3.对比正比例、反比例解决问题的相同和不同

师:通过这2个问题的解决,我们又了解到了用反比例意义也能帮助我们解决生活中的实际问题。现在请同学们观察例5和例6,说一说他们有什么相同和不同?

生:以合作的方式探讨,然后派代表汇报探讨结果。

比较以上两题的异同点,使学生明确都是用比例的知识解决问题,不同点在于题中两种量的关系不同,计算方法也就不相同。

三、目标检测

师:课本第60做一做,是生活中的另外的问题,同学们能不能帮助解决?(要求用比例知识解)

学生自己解决做—做中的问题。

师:请说一说题中的数量关系,再说一说解决问题的思路。

学情预设:第1题,小明买的是同一种圆珠笔,所以圆珠笔的单价不变。那么买的支数和所用的钱数成正比例关系,所以用正比例关系能解决这个问题。第2题,用反比例关系可以解决这个问题。

四、课堂小结

1、根据这节课的学习,你认为用比例解决问题的过程应该怎样想,怎样解答,可以归纳为哪几个步骤?(组内交流)

讨论、汇报、师小结:

(1)、分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例

(2)、依据正比例或反比例意义列出方程

(3)、解方程(求解后检验),写答

2、师:这节课你有什么收获?有什么要提醒大家要特别注意的?